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LATTICE GREEN'S FUNCTIONS FOR HIGH-ORDER FINITE
DIFFERENCE STENCILS\ast 

JAMES GABBARD\dagger AND WIM M. VAN REES\dagger 

Abstract. Lattice Green's functions (LGFs) are fundamental solutions to discretized linear
operators, and as such they are a useful tool for solving discretized elliptic PDEs on domains that
are unbounded in one or more directions. The majority of existing numerical solvers that make
use of LGFs rely on a second-order discretization and operate on domains with free-space boundary
conditions in all directions. Under these conditions, fast expansion methods are available that enable
precomputation of 2-dimensional or 3-dimensional (3D) LGFs in linear time, avoiding the need for
brute-force multidimensional quadrature of numerically unstable integrals. Here we focus on higher-
order discretizations of the Laplace operator on domains with more general boundary conditions,
by (1) providing an algorithm for fast and accurate evaluation of the LGFs associated with high-
order dimension-split centered finite differences on unbounded domains, and (2) deriving closed-form
expressions for the LGFs associated with both dimension-split and Mehrstellen discretizations on
domains with one unbounded dimension. Through numerical experiments we demonstrate that these
techniques provide LGF evaluations with near machine-precision accuracy, and that the resulting
LGFs allow for numerically consistent solutions to high-order discretizations of the Poisson's equation
on fully or partially unbounded 3D domains.

Key words. Lattice Green's function, high-order finite difference, unbounded domain, asymp-
totic expansion
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1. Introduction. A lattice Green's function (LGF) is a fundamental solution
to a discretized linear operator. LGFs are common kernels in fast multipole methods
(FMMs) for elliptic difference equations [16, 27, 9], and they can serve as a regular-
ized Green's function for Poisson solvers based on the fast Fourier transform (FFT)
[6, 4, 1]. These fast elliptic solvers are a key component of incompressible flow sim-
ulations on unbounded (or free-space) domains, where the Green's function convolu-
tion approach enables the enforcement of far-field boundary conditions outside of the
compact solution domain [28, 2, 10]. For these methods the LGF, as opposed to a
continuous Green's function, can be used to enforce discrete conservation properties
[28, 12], or to preserve the accuracy of immersed interface methods that are tailored
to a particular difference scheme [15, 12].

The choice of fast convolution algorithm (FFT or FMM) typically depends on
the source distribution and the choice of computational domain. For PDEs with
smooth source distributions that can be efficiently contained in a rectangular re-
gion, FFT-based convolution algorithms for uniform grids outperform the FMM when
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26 JAMES GABBARD AND WIM M. VAN REES

implemented on massively parallel computer architectures [14]. When the distribu-
tion of sources is sparse or irregularly shaped, the flexibility of the FMM can become
advantageous, and there have been several FMMs that make use of LGFs to solve
elliptic difference equations using uniform grids [16, 27] or multiresolution grids [9].
In either case, the accuracy of these convolution algorithms is limited by the accuracy
of the kernel, so that a solution that satisfies a discretized PDE to near machine pre-
cision requires an evaluation of the LGF to near machine precision. Thus the range
of difference equations that can be solved with either FFT-based or FMM-based ap-
proaches depends on the availability of algorithms that can accurately evaluate the
associated LGFs.

In prior works, the LGF has been synonymous with the LGF for the second-order
centered difference stencil for the Laplace operator on a fully unbounded 2 dimen-
sional (2D) or 3 dimensional (3D) Cartesian grid. This difference scheme arises also
in lattice models with nearest-neighbor interactions, and as a result there has been a
considerable amount of work in the physics community on evaluating or approximat-
ing specific values of this LGF with analytical techniques; see [31] for an overview.
One such result is that the second-order LGF on a fully unbounded domain can be
expressed as a 1 dimensional (1D) improper integral involving modified Bessel func-
tions [26, 7], which has allowed for fast and accurate evaluations of the second-order
LGF in numerical solvers. However, similar results have not been proposed for the
LGFs associated with higher-order finite difference stencils, which are generally not
analogous to common physical models and do not share the same evaluation pathways
that rely on Bessel functions.

Additionally, while most existing literature has focused on the LGF for unbounded
domains, the concept can be extended to domains with periodic or symmetric bound-
ary conditions along one or more boundaries. These boundary conditions occur
frequently in aerodynamics applications: symmetric-unbounded domains allow for
robust inflow and outflow boundary conditions in the streamwise direction while elim-
inating blockage effects from the other boundaries, [5] while periodic-unbounded do-
mains allow for studies of isolated vortex tubes without artificial boundary conditions
[22]. [3] provides a closed-form solution for the second-order stencil in a 2D domain
with one unbounded and one periodic direction. However, no corresponding results
have been obtained for the LGFs of higher-order finite difference stencils.

Besides the LGFs, an alternative strategy for solving elliptic PDEs that is amenable
to higher-order convergence and more general domains relies on regularized Green's
functions, which are a nonsingular approximation to the Green's function of the con-
tinuous Laplace operator. A regularization approach based on cell averaging that is
compatible with mixed periodic and unbounded domains is developed in [6], which
demonstrates second-order convergence. The work of [30] extends these techniques to
the Gaussian regularization proposed in [18, 19], allowing for higher-order convergence
in Poisson problems on mixed periodic and unbounded domains. For fully unbounded
domains, a regularization method that achieves spectral accuracy by suppressing only
the highest frequencies of the continuous Green's function is presented in [20]. While
these regularized Green's functions are an effective method for solving elliptic PDEs
on unbounded domains, they do not provide an exact solution for elliptic difference
equations derived from these PDEs.

Extending LGFs to high-order finite difference stencils and more general domain
boundary conditions using existing analytical techniques presents several immediate
challenges. In fully unbounded domains the LGF is defined by a Fourier integral
with a singular integrand. A far-field expansion of this integral for arbitrary finite
difference schemes can be computed using the algorithm in [29]; however, near-field
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HIGH-ORDER LATTICE GREEN'S FUNCTIONS 27

interactions must be computed directly via multidimensional quadrature or approx-
imated with ad hoc methods [25]. For 3D domains with one or two unbounded di-
rections, FFT-based solvers require a partially Fourier-transformed Green's function
which can also be expressed as a Fourier integral. Here the integrand is nonsingular,
and there is no general method that yields a far-field expansion. Evaluating far-field
interactions via quadrature leads to catastrophic cancellation due to a rapidly oscillat-
ing integrand, while existing workarounds developed for regularized Green's functions
lead to only an approximate enforcement of free-space boundary conditions [30].

In this work we address two major challenges inherent in evaluating the LGFs
of high-order finite difference schemes for the Laplace operator. First, we provide an
algorithm that can evaluate near-field LGF values for arbitrary dimension-split sten-
cils on fully unbounded domains, yielding near machine-precision results and avoiding
the need for multidimensional quadrature. Second, we develop an analytical toolset
that yields numerically stable closed-form expressions for the LGF of an arbitrary
difference stencil on domains with one unbounded direction. When combined with
the far-field expansion algorithms developed in [29], our first contribution allows for
the fast and accurate precomputation of LGFs of higher-order finite difference sten-
cils on fully unbounded domains. Our second contribution extends this capability to
domains with one unbounded direction and one or two periodic directions. The pre-
computed LGFs can then be paired with either FFT-based or FMM-based convolution
algorithms to obtain exact solutions to high-order discretizations of elliptic PDEs.

The remainder of this work is organized as follows. We begin by defining our no-
tation and the high-order finite difference schemes of interest in section 2. Section 3.1
presents an algorithm that allows for fast and accurate evaluations of the LGFs asso-
ciated with dimension-split stencils on fully unbounded domains. Section 3.2 develops
a procedure for deriving stable closed-form expressions for the LGF in domains with
a single unbounded dimension, applicable to any consistent and symmetric finite dif-
ference discretization. Section 3.3 addresses several technicalities that arise when
extending these 3D results to 2D domains. We provide computational results that
quantify the accuracy and efficiency of these computational methods in section 4, and
draw conclusions in section 5.

2. Finite difference stencils. In this section we define the notation used
throughout this work to represent finite difference operators, both through their co-
efficients and through their Fourier transforms. This work focuses on finite difference
approximations to the negative Laplace operator ( - \nabla 2) that are defined on a d-
dimensional Cartesian lattice for d= 2,3. We consider lattices with unit spacing, and
treat functions on a lattice as functions of an integer index n = (n1, . . . , nd). Below
we detail the finite difference schemes considered in this work, starting from a gen-
eral Mehrstellen discretization in section 2.1 and then specializing the discussion to
classical dimension-split stencils in section 2.2. We note that all finite difference dis-
cretizations discussed here are consistent and symmetric, and any bounded function
in the null space of the difference operators is a constant function. These requirements
place useful restrictions on the spectrum of the difference operator, as discussed in
section 3.

2.1. Mehrstellen stencils. A Mehrstellen discretization of the Poisson equa-
tion takes the form \scrL u=\scrR f , where u(n) and f(n) are scalar functions defined on a
lattice. Here \scrL and \scrR are a pair of finite difference operators of the form

[\scrL u](n) =
\sum 

\bfitalpha \in \scrI (\scrL )

a\bfitalpha u(n+\bfitalpha ), [\scrR f ](n) =
\sum 

\bfitbeta \in \scrI (\scrR )

b\bfitbeta f(n+\bfitbeta ),(2.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

4/
24

 to
 1

8.
10

.7
5.

19
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



28 JAMES GABBARD AND WIM M. VAN REES

where \bfitalpha , \bfitbeta \in \BbbZ d are integer indices, a\bfitalpha , b\bfitbeta are the corresponding finite difference co-
efficients, and \scrI (\cdot ) indicates the set of indices for the coefficients of a finite difference
operator. The design and analysis of Mehrstellen discretizations is treated compre-
hensively in [8], which also provides a brief history of their development. Following
[8], we define symmetry by requiring that a\bfitalpha = a\pi (\bfitalpha ) and b\bfitbeta = b\pi (\bfitbeta ) for any trans-
formation \pi (\cdot ) generated by flipping signs or permuting entries within a multi-index.
The Fourier symbols of the operators \scrL and \scrR are then given by

\sigma \scrL (\bfitk ) =
\sum 

\bfitalpha \in \scrI (\scrL )

a\bfitalpha e
i\bfitk \cdot \bfitalpha , \sigma \scrR (\bfitk ) =

\sum 
\bfitbeta \in \scrI (\scrR )

b\bfitbeta e
i\bfitk \cdot \bfitbeta .(2.2)

Consistency implies that \sigma \scrL (\bfitk ) = | \bfitk | 2 +\scrO (| \bfitk | 4) and \sigma \scrR (\bfitk ) = 1 +\scrO (| \bfitk | 2) as | \bfitk | \rightarrow 0.
By taking advantage of symmetry, the symbols can be reduced to the real form

\sigma \scrL (\bfitk ) =
\sum 

\bfitalpha \in \scrI (\scrL )

a\bfitalpha 

d\prod 
i=1

cos(\alpha iki),(2.3)

and likewise for \sigma \scrR (\bfitk ). While convenient, this form can suffer from a loss of precision
as | \bfitk | \rightarrow 0, which can be remedied by reexpressing the symbol as a polynomial in the
variables yi = sin2(ki/2). Using the identities cos(\theta ) = 1 - 2 sin2(\theta /2) and cos(n\theta ) =
Tn(cos(\theta )), where Tn(x) is a Chebyshev polynomial of the first kind, we find the
numerically stable form

\~\sigma \scrL (\bfity ) =
\sum 

\bfitalpha \in \scrI (\scrL )

a\bfitalpha 

d\prod 
i=1

T| \alpha i| (1 - 2yi).(2.4)

The same transformation can be applied to the symbol of the right-hand side operator
to obtain \~\sigma \scrR (\bfity ). Throughout the article will use the Mehrstellen stencils of order four
and six [8], which have coefficients listed in Table 1.

2.2. Dimension-split stencils. The notation for the Mehrstellen stencils above
can be simplified to obtain classical dimension-split discretizations of the Poisson
equation, for which \scrR is the identity and \scrL is a finite difference operator of the form

[\scrL u](n) =
d\sum 

i=1

w\sum 
j= - w

aju(n+ jei).(2.5)

Here ei is a unit vector for the ith dimension, w is the stencil width, and the \{ aj\} 
are stencil coefficients. Symmetry and consistency imply that a - j = aj and a0 =

Table 1
Coefficients of the fourth- and sixth-order Mehrstellen stencils [8].

Order \{ a\bfitalpha \} \{ b\bfitbeta \} 

4 a\pi (0,0,0) = 4, a\pi (0,0,1) = - 1
3
, b\pi (0,0,0) =

1
2
, b\pi (0,0,1) =

1
12

a\pi (0,1,1) = - 1
6

6 a\pi (0,0,0) =
64
15

, a\pi (0,0,1) = - 7
15

, b\pi (0,0,0) =
67
120

, b\pi (0,0,1) =
1
18

,

a\pi (0,1,1) = - 1
10

, a\pi (1,1,1) = - 1
30

b\pi (0,0,2) = - 1
240

, b\pi (0,1,1) =
1
90

,
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HIGH-ORDER LATTICE GREEN'S FUNCTIONS 29

Table 2
Coefficients of the standard second difference stencils.

Order w \{ aj\} wj=1 \sigma \mathrm{m}\mathrm{a}\mathrm{x}

2 1 \{  - 1\} 4

4 2 \{  - 4
3
, 1
12

\} 16
3

\approx 5.33

6 3 \{  - 3
2
, 3
20

, - 1
90

\} 272
45

\approx 6.04

8 4 \{  - 8
5
, 1
5
, - 8

315
, 1
560

\} 2048
315

\approx 6.50

 - 2
\sum w

j=1 aj , so that \scrL is uniquely defined by its noncentral coefficients \{ aj\} wj=1. For

these discretizations \sigma \scrR (\bfitk ) = 1 and \sigma \scrL (\bfitk ) =
\sum d

i=1 \sigma (ki) with

\sigma (k)\equiv 
w\sum 

j= - w

aje
ijk = 4

w\sum 
j=1

ajsin
2

\biggl( 
jk

2

\biggr) 
.(2.6)

While the two forms in (2.6) are equivalent, the second is more numerically stable for
small k. By definition \sigma (k) is even and 2\pi -periodic, and the consistency of the stencil
implies that \sigma (k) = k2 +\scrO (k4) at the origin. In addition, we will assume that \sigma (k)
is strictly positive for k \not = 0, so that any bounded function in the nullspace of \scrL is a
constant function.

Throughout this work the standard centered stencils of order two, four, six, and
eight are used as examples. Their coefficients are given in Table 2, along with the
maximum value of the symbol \sigma max =maxk \sigma (k). This maximum occurs at k= \pi for
all four stencils.

3. Solving the Poisson equation. In this work we consider the discretized 3D
Poisson equation \scrL u = \scrR f on three types of lattices: those that are fully periodic,
those that are fully unbounded, and those that are unbounded in only one direction.
In all three cases, the LGF associated with a finite difference discretization (\scrL ,\scrR ) is
a scalar function G(n) satisfying

[\scrL G](n) = [\scrR \delta ](n) with \delta (n) =

\Biggl\{ 
1, n= 0,

0, n \not = 0.
(3.1)

Once the LGF is known, the solution of the Poisson equation can be obtained from
the convolution

u(n) = [G \ast f ](n)\equiv 
\sum 
n\prime 

G(n - n\prime )f(n\prime ).(3.2)

Here the sum is taken over all lattice points. The LGF is most easily computed via
its Fourier transform

\^G(\bfitk ) =\scrF [G](\bfitk )\equiv 
\sum 
n

G(n)e - in\cdot \bfitk .(3.3)

Applying the transform to both sides of (3.1) yields the straightforward relation
\^G(\bfitk ) = \sigma \scrR (\bfitk )/\sigma \scrL (\bfitk ). From here the most efficient algorithm for computing the
convolution u=G \ast f varies based on the lattice boundary conditions. As described
in [4], the convolution can be computed dimension-by-dimension, using an FFT to per-
form the convolution along periodic dimensions and a Hockney--Eastwood algorithm

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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30 JAMES GABBARD AND WIM M. VAN REES

[21] to perform the convolution along unbounded dimensions. Thus fully periodic
domains require the evaluation of \^G(\bfitk ); fully unbounded domains require the LGF
G(n) obtained via the inverse Fourier transform

G(n) =
1

(2\pi )3

\int 
[ - \pi ,\pi ]3

ein\cdot \bfitk 
\sigma \scrR (\bfitk )

\sigma \scrL (\bfitk )
d\bfitk ;(3.4)

and domains that are unbounded in only one direction require the partially trans-
formed Green's function

G(n,k2, k3) =
1

2\pi 

\int \pi 

 - \pi 

eink
\sigma \scrR (k, k2, k3)

\sigma \scrL (k, k2, k3)
dk.(3.5)

Here we have assumed that the first dimension is unbounded, so that n represents an
unbounded lattice coordinate and (k2, k3) are wavenumbers for the second and third
dimensions, respectively; other configurations can be obtained by permuting indices.

While the computation for periodic domains is trivial, the integrals in (3.4) and
(3.5) are challenging to compute numerically. We address (3.4) in section 3.1, and
return to (3.5) in section 3.2. In each case we first introduce the general approach for
Mehrstellen stencils, and then the specializations and algorithmic optimizations for
dimension-split stencils. Table 3 provides a summary of the existing techniques for
evaluating these integrals, as well as the contributions made in this work and outlined
in the sections below.

3.1. Fully unbounded domains.

3.1.1. Mehrstellen stencils. For a general finite difference discretization (\scrL ,\scrR )
on a fully unbounded domain, there is currently no universal strategy for simplifying
the 3D integral in (3.4). For moderate values of n the integral can be approximated
via adaptive numerical quadrature, which is necessary to capture the 1/| \bfitk | 2 singular-
ity of the integrand at the origin. For larger values of n the integrand becomes highly
oscillatory, and evaluation via quadrature becomes impractical. In this regime the

Table 3
Summary of LGF evaluation strategies and their complexities, including algorithms proposed by

previous authors and contributions from this work. The first two rows represent existing techniques,
while the remaining rows indicate improved algorithms developed in this work. Complexities are
largely illustrative, with N indicating the cost of evaluating a 1D integral with a smooth integrand via
quadrature. In practice the quadrature is adaptive, and the exact cost of each integration varies with
the integrand, limits of integration, and error tolerance. The far-field interactions on domains with
three unbounded directions can be evaluated in \scrO (1) time for any stencil using existing asymptotic
expansion techniques [29].

Stencil type Three unbounded directions

(near-field interactions)

One unbounded direction (all

interactions)

Any stencil \scrO (N3) with singular integrand,
evaluate (3.4) via quadrature

\scrO (N) with singular integrand,
evaluate (3.5) via quadrature

Second-order

dimension-split

Reduced to \scrO (N) via

reformulation involving Bessel
functions [27]

Reduced to \scrO (1) via analytical

expression [3]

Mehrstellen stencils No improvement (section 3.1.1) Reduced to \scrO (1) via analytical

expression (section 3.2.1)

High-order dimension-split Reduced to \scrO (N2) via
semianalytical reformulation

(section 3.1.2)

Reduced to \scrO (1) via analytical
expression (section 3.2.2)
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HIGH-ORDER LATTICE GREEN'S FUNCTIONS 31

LGF can be expanded in a large-n asymptotic series using the algorithm provided by
Martinsson and Rodin [29]. In practice the values of G(n) that require quadrature are
precomputed and stored in a lookup table, and the remaining values are computed
on-the-fly from the large-n expansion [16]. While this allows for fast evaluation of
G(n) for any n, the precomputation can be computationally expensive, particularly
when near machine-precision accuracy is required (see section 4).

3.1.2. Dimension-split stencils. When \scrL is a dimension-split operator and \scrR 
is the identity, the cost and accuracy of this precomputation can be improved through
an additive decomposition of \sigma \scrL (\bfitk ). Noting that \sigma \scrL (\bfitk ) = \sigma (k1) + \sigma (k2) + \sigma (k3) is
invariant with respect to the transformation ki \rightarrow  - ki, the integral in (3.4) can be
reexpressed in the purely real form

G(n) =
1

(2\pi )3

\int 
[ - \pi ,\pi ]3

cos(n1k1) cos(n2k2) cos(n3k3)

\sigma (k1) + \sigma (k2) + \sigma (k3)
dk3.(3.6)

Following [26], applying the identity y - 1 =
\int \infty 
0

e - tydt then yields

G(n) =

\int \infty 

0

3\prod 
i=1

\scrI \sigma ,ni
(t)dt,(3.7)

where \scrI \sigma ,n(t) is a family of special functions associated with the symbol \sigma (k) and an
integer index n via

\scrI \sigma ,n(t)\equiv 
1

2\pi 

\int \pi 

 - \pi 

e - t\sigma (k) cos(nk)dk.(3.8)

For convenience, we will often split the integral in (3.7) into several regions of inte-
gration, each notated

G[t1,t2](n)\equiv 
\int t2

t1

3\prod 
i=1

\scrI \sigma ,ni
(t)dt.(3.9)

When \scrL represents the standard second-order centered finite difference stencil with
symbol \sigma (k) = 2  - 2cos(k), the function \scrI \sigma ,n(t) is equivalent to e - 2tIn(2t), where
In(t) is a modified Bessel function of the first kind [26]. This reduces the fully 3D
integral defining the LGF to G(n) =

\int \infty 
0

e - 6tIn1
(2t)In2

(2t)In3
(2t)dt, which is a 1D

improper integral with a nonsingular integrand. To avoid integration over an infinite
domain the evaluation is typically split into two regions separated by a large cutoff
value tmax, so that G(n) = G[0,t\mathrm{m}\mathrm{a}\mathrm{x}](n) + G[t\mathrm{m}\mathrm{a}\mathrm{x},\infty ](n). The first term is evaluated
directly via 1D numerical quadrature, while the second is evaluated in closed form
using a large-t asymptotic expansion of In(t) [27]. This algorithm allows for fast and
accurate evaluation of the LGF for the second-order dimension-split stencil on a fully
unbounded domain, and it has been used in the majority of numerical applications to
date [27, 28, 15, 9, 4].

For higher-order dimension-split stencils, the modified Bessel function substitu-
tion is no longer applicable. Instead we propose a novel algorithm for fast and accurate
evaluations of \scrI \sigma ,n(t). For moderate values of t the integrand in (3.8) is smooth and
periodic on [0,2\pi ], and the integral can be evaluated to machine precision with nu-
merical quadrature. For large t the integrand is exponentially peaked at the origin,
which makes quadrature impractical but allows for the evaluation of \scrI \sigma ,n(t) via the
large-t asymptotic expansion
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32 JAMES GABBARD AND WIM M. VAN REES

\scrI \sigma ,n(t) =
1\surd 
4\pi t

J - 1\sum 
j=0

b\sigma ,j(n)t
 - j +R\scrI 

\sigma ,J(n, t).(3.10)

Here each b\sigma ,j(n) is an even polynomial of degree 2j with b\sigma ,0(n) = 1, and R\scrI 
\sigma ,J(n, t)

is the remainder due to truncating the series after J terms. The full set of coeffi-
cients \{ b\sigma ,j(n)\} j<J can be computed symbolically using the algorithm described in
Appendix A.

To compute the LGF G(n) efficiently using this large-t expansion of \scrI \sigma ,n(t), we
fix a number of terms J and an evaluation region [0, nmax]

3 in advance, and consider
the decomposition

G(n) =G[0,t\mathrm{m}\mathrm{i}\mathrm{n}](n) +G[t\mathrm{m}\mathrm{i}\mathrm{n},T\mathrm{m}\mathrm{i}\mathrm{n}](n) +G[T\mathrm{m}\mathrm{i}\mathrm{n},\infty ](n).(3.11)

For the first term, both the integral defining G[0,t\mathrm{m}\mathrm{i}\mathrm{n}](n) and the integrals defining
the \scrI \sigma ,ni

(t) are computed via numerical quadrature. For the second term, the inte-
gral defining G[t\mathrm{m}\mathrm{i}\mathrm{n},T\mathrm{m}\mathrm{i}\mathrm{n}](n) is computed via numerical quadrature, while each of the
\scrI \sigma ,ni(t) that appear in the integrand are approximated via the large-t series expansion
in (3.10). Finally, the third term is computed in closed form using the expansion

G[T\mathrm{m}\mathrm{i}\mathrm{n},\infty ](n) =
1\surd 

16\pi 3T

J - 1\sum 
j=0

g\sigma ,j(n)T
 - j
min +RG

\sigma ,J(Tmin),(3.12)

where RG
\sigma ,J(Tmin) is the remainder due to truncating the series after J terms and each

g\sigma ,j(n) is a multivariate polynomial of degree 2j defined by

g\sigma ,j(n) =
1

2j + 1

\sum 
\ell 1+\ell 2+\ell 3=j

b\sigma ,\ell 1(n1)b\sigma ,\ell 2(n2)b\sigma ,\ell 3(n3).(3.13)

This expansion is obtained directly from (3.9) by replacing each \scrI \sigma ,ni
(t) with a large-t

expansion and integrating each resulting term over the region [Tmin,\infty ].
The algorithm is completed by an appropriate choice of the thresholds tmin and

Tmin, which determine the accuracy of the large-t expansion in (3.10) and (3.12),
respectively. If each \scrI \sigma ,n(t) is required with absolute and relative errors \epsilon a and \epsilon r, we
select thresholds tmin and nmax such that | n| \leq nmax and t > tmin imply | R\scrI 

\sigma ,J(n, t)| <
\epsilon a and | R\scrI 

\sigma ,J(n, t)/\scrI \sigma ,n(t)| < \epsilon r. Assuming that | \scrI \sigma ,n(t)| is well represented by the

first term in the sum, and that | R\scrI 
\sigma ,J(n, t)| is well represented by the first neglected

term, we can estimate tmin as a function of J and nmax via

tmin =max

\Biggl( \bigm| \bigm| \bigm| \bigm| b\sigma ,J(nmax)

\epsilon r

\bigm| \bigm| \bigm| \bigm| 1J ,

\bigm| \bigm| \bigm| \bigm| b\sigma ,J(nmax)

\epsilon a
\surd 
4\pi 

\bigm| \bigm| \bigm| \bigm| 2
2J+1

\Biggr) 
.(3.14)

Likewise, given absolute and relative error tolerances \epsilon a and \epsilon r for G[T\mathrm{m}\mathrm{i}\mathrm{n},\infty ](n), we
choose a threshold Tmin such that T \geq Tmin implies | RG

\sigma ,J(T )| < \epsilon a and | RG
\sigma ,J(T )/

G[T,\infty ](n)| < \epsilon r. Assuming that | G[T,\infty ](n)| is well represented by the first term
in the sum and that | RG

\sigma ,J(T )| is well represented by the first neglected term, this
threshold is approximately

Tmin =max

\Biggl( \bigm| \bigm| \bigm| \bigm| g\sigma ,J(nmax)

\epsilon r

\bigm| \bigm| \bigm| \bigm| 1J ,

\bigm| \bigm| \bigm| \bigm| g\sigma ,j(nmax)

\epsilon a
\surd 
16\pi 3

\bigm| \bigm| \bigm| \bigm| 2
2J+1

\Biggr) 
.(3.15)
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HIGH-ORDER LATTICE GREEN'S FUNCTIONS 33

In the above we choose nmax = [nmax, nmax, nmax] under the assumption that the poly-
nomial g\sigma ,J(n) is monotonic in each argument for n above some minimum value. In
our numerical experiments we select a single set of absolute and relative tolerances \epsilon a
and \epsilon r that are used both for 1D adaptive quadrature routines and for the threshold
estimates in (3.14) and (3.15). Because of the assumption used to derive the thresh-
olds and the additive decomposition in (3.11), the resulting approximation to G(n) is
not strictly bound by the chosen tolerances. However, the numerical experiments pre-
sented in section 4 indicate that the resulting errors fall within an order of magnitude
of \epsilon a and \epsilon r.

With the algorithm outlined above, the majority of the computation is spent
evaluating G[0,t\mathrm{m}\mathrm{i}\mathrm{n}](n), which as a nested integral is effectively 2D, nonsingular, and
has a well-defined domain. The second term G[t\mathrm{m}\mathrm{i}\mathrm{n},T\mathrm{m}\mathrm{i}\mathrm{n}](n) requires only 1D numerical
quadrature, while the third term G[T\mathrm{m}\mathrm{i}\mathrm{n},\infty ](n) is fully analytical. Compared to a direct
evaluation of (3.6) by 3D adaptive quadrature, the algorithm presented here is able
to achieve near machine-precision results with considerably less computation (see
section 4.1).

3.2. Domains with one unbounded dimension. In this section we provide
closed-form analytical expressions for LGFs of both Mehrstellen and dimension-split
stencils on domains with one unbounded direction, eliminating the need to evaluate
(3.5) via numerical quadrature. We note that the analysis below is similar in spirit to
an approach developed by Buneman [3] for the second-order dimension-split stencil,
which relies on the solution of a linear recursion. Here we favor an approach based
on contour integration, which provides more powerful tools to maintain numerical
stability for certain edge cases.

3.2.1. Mehrstellen stencils. Let (\scrL ,\scrR ) be a Mehrstellen discretization on a
domain with one unbounded direction. Without loss of generality we will assume
that n1 is the unbounded lattice coordinate, so that the partially transformed LGF
G(n,k2, k3) defined in (3.5) is the object of interest. We begin by isolating the k1
dependence of \sigma \scrL (\bfitk ). Defining the stencil width w\scrL =max\bfitalpha \in \scrI (\scrL ) \| \bfitalpha \| \infty , the symbol
can be rewritten as

\sigma \scrL (k;k2, k3) =
w\scrL \sum 

j= - w\scrL 

aj(k2, k3)e
ijk with aj(k1, k2) =

\sum 
\bfitalpha \in \scrI (\scrL ), \alpha 1=j

a\bfitalpha e
i(k2\alpha 2+k3\alpha 3).

(3.16)

In this form the symbol resembles that of a 1D finite difference scheme with coefficients
\{ aj\} that depend on the parameters (k2, k3). The symmetry of the coefficients \{ a\bfitalpha \} 
implies that aj(k2, k3) = a - j(k2, k3), so that the 1D scheme is symmetric as well. For
brevity and numerical stability we replace the parameters (k2, k3) with the vector
parameter \bfity = [sin2(k2/2), sin

2(k3/2)] \in [0, 1]2, so that the coefficients \{ aj(\bfity )\} are
multivariate polynomials in \bfity . Finally, we define a characteristic polynomial

p\scrL (z;\bfity ) =
w\scrL \sum 

j= - w\scrL 

aj(\bfity )z
j+w\scrL ,(3.17)

which has degree 2w\scrL and coefficients equal to the coefficients of the difference scheme.
For the discrete operator\scrR , the stencil width w\scrR , coefficients bj(\bfity ), and characteristic
polynomial p\scrR (z;\bfity ) are defined analogously.
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34 JAMES GABBARD AND WIM M. VAN REES

Returning to the integral in (3.5), we make the substitution z = eik and make use
of the definitions above to arrive at the contour integral

G(n;\bfity ) =
1

2\pi i

\oint 
zn - mp\scrR (z;\bfity )

p\scrL (z;\bfity )
dz,(3.18)

wherem\equiv w\scrR  - w\scrL +1 and the integral is taken counterclockwise around the unit circle
in the complex plane. Taking advantage of the symmetry G(n;\bfity ) = G( - n;\bfity ), we
assume that n\geq 0 in (3.18) and in the following analysis; for negative arguments each
n should be replaced by | n| . Because the integrand is a rational function, the integral
can be evaluated with the method of residues. Thus the roots of p\scrL (z;\bfity ) lying on or
inside the unit circle determine the behavior of G(n,\bfity ). Before proceeding further,
we note the assumptions made on the operator \scrL lead to corresponding constraints
on the roots of p\scrL (z;\bfity ). The consistency of the underlying stencil implies that the
polynomial p(z;0) has a root at z = 1 with multiplicity two. To see this we note
that aj(0) =

\sum 
\alpha i=j a\bfitalpha and that consistency implies that \scrL is exact on quadratic

polynomials, so that

p\scrL (1;0) =
w\scrL \sum 

j= - w\scrL 

aj(0) =\scrL [1] = 0,

p\prime \scrL (1;0) =
w\scrL \sum 

j= - w\scrL 

aj(0)(j +w\scrL ) =\scrL [n1 +w\scrL ] = 0,

p\prime \prime \scrL (1;0) =
w\scrL \sum 

j= - w\scrL 

aj(0)(j +w\scrL )(j +w\scrL  - 1) =\scrL [(n1 +w\scrL )(n1 +w\scrL  - 1)] = - 2.

(3.19)

A similar analysis of \scrR indicates that p\scrR (1;0) = 1, which will be useful below. The
symmetry of the coefficients of p\scrL (z;\bfity ) implies that when r is a root of p\scrL (z;\bfity ), the
reciprocal 1/r is also a root. Finally, the assumption that \sigma \scrL (\bfitk ) \not = 0 for | \bfitk | \not = 0
implies that p\scrL (z;\bfity ) is nonzero on the unit circle except when z = 1 and | \bfity | = 0.
Taken together, these three properties imply that for | \bfity | > 0 there are at most w\scrL 
roots (counted with their multiplicities) that lie strictly inside the unit circle, and for
| \bfity | = 0 there are at most w\scrL  - 1 roots strictly inside the unit circle and a double root
at z = 1.

To locate these roots efficiently, let \lambda = 1
2 (z+z - 1), and note that zj+z - j = 2Tj(\lambda ),

where Tj is the jth Chebyshev polynomial of the first kind. Making a change of
variables in (3.17) then yields

p\scrL (z;\bfity )
zw

= a0(\bfity ) + 2

w\scrL \sum 
j=1

aj(\bfity )Tj(\lambda )\equiv q(\lambda ;\bfity ),(3.20)

where q(\lambda ;\bfity ) is a degree w\scrL polynomial in \lambda . Differentiating the above definition
twice and substituting the relations (3.19) yield q(1;0) = 0 and q\prime (1;0) = - 2, so that
q(\lambda ;\bfity ) has a single root at \lambda = 1. For each root of q(\lambda ;\bfity ), there is a root

r= \lambda  - 
\surd 
\lambda  - 1

\surd 
\lambda + 1(3.21)

satisfying p\scrL (r;\bfity ) = p\scrL (r - 1;\bfity ) = 0 with | r| \leq 1. Thus the change of variables reduces
the problem of finding the 2w\scrL roots of p\scrL (z;\bfity ) to finding the w\scrL roots of q(\lambda ;\bfity ),
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HIGH-ORDER LATTICE GREEN'S FUNCTIONS 35

and allows for a closed form representation of the roots for stencils with w\scrL \leq 4. Note
that (3.21) can be simplified analytically, but the written expression guarantees that
| r| \leq 1 when the square root is taken with a branch cut on the negative real axis.

Returning to the integral in (3.18), we begin by assuming that | \bfity | \not = 0. Let \{ ri\} 
be the set of roots of p\scrL (z;\bfity ) lying strictly inside the unit circle. In the simplest case
there are w\scrL distinct roots satisfying ri \not = 0 and p\scrR (ri;\bfity ) \not = 0, so that the integrand
has w\scrL simple poles and a pole of order m - n at z = 0. The LGF can then be written
in closed form as

G(n;\bfity ) =

w\scrL \sum 
i=1

rn - m
i

p\scrR (ri;\bfity )

p\prime \scrL (ri;\bfity )
+

dm - n - 1

dzm - n - 1
z

\biggl[ 
p\scrR (z;\bfity )

p\scrL (z;\bfity )

\biggr] 
z=0

,(3.22)

where the second is omitted whenever n>m - 1. If the set \{ ri\} contains a conjugate
pair (r1, r2), we use the polar decomposition r1 = \rho ei\theta to write the corresponding
terms in the real form

2\sum 
i=1

rn - m
i

p\scrR (ri;\bfity )

p\prime \scrL (ri;\bfity )
= | K| \rho n sin(n\theta + \phi ) with K =

2p\scrR (r1;\bfity )

rm1 p\prime \scrL (r1;\bfity )
and \phi = arg(iK).

(3.23)

This form is numerically stable when the roots have a positive real part and arbitrarily
small imaginary part.

When | \bfity | = 0, the integrand in (3.5) has a 1/k2 singularity at the origin, which
is not integrable. To remedy this, we instead evaluate

G\ast (n) =G(n,0) - G(0,0) =
1

2\pi 

\int \pi 

 - \pi 

(eink  - 1)\sigma \scrR (k,0,0)

\sigma \scrL (k,0,0)
dk.(3.24)

The new integrand is bounded and has a removable singularity at k = 0. Expressed
as a contour integral,

G\ast (n) =
1

2\pi i

\oint 
(zn  - 1)p\scrR (z;0)

zmp\scrL (z;0)
dz.(3.25)

The denominator has a double root at z = 1, but the factorization zn  - 1 = (z  - 1)\sum n - 1
j=0 zj indicates that the integrand has only a simple pole at z = 1. The corre-

sponding residue is

lim
z\rightarrow 1

(z  - 1)

\biggl[ 
(zn  - 1)p\scrR (z;0)

zmp\scrL (z;0)

\biggr] 
= lim

z\rightarrow 1

\left[  p\scrR (z;0)

zm
(z  - 1)2

p\scrL (z;0)

n - 1\sum 
j=0

zj

\right]  = 2n
p\scrR (1;0)

p\prime \prime \scrL (1;0)
= - n.

(3.26)

Because this pole lies on the contour of integration, (3.25) must be interpreted as the
Cauchy principal value

G\ast (n) = - n

2
+

w\scrL  - 1\sum 
i=1

(rni  - 1)

rmi

p\scrR (ri;0)

p\prime \scrL (ri;0)
+

dm - n - 1

dzm - n - 1
z

\biggl[ 
p\scrR (z;0)

p\scrL (z;0)

\biggr] 
z=0

,(3.27)

where the third term is omitted whenever n>m - 1.
We note that for small but nonzero \bfity the expression in (3.26) suffers from cat-

astrophic cancellation in a naive evaluation of p\prime \scrL (z;\bfity ). For discretizations of the
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36 JAMES GABBARD AND WIM M. VAN REES

Poisson equation we do not encounter | \bfity | smaller than sin2(\pi /N)\approx \pi 2/N2, where N
is the number of points along the largest periodic dimension, and the result retains a
relative precision of roughly N\epsilon m, where \epsilon m is the relative machine precision. Thus
the issue can be safely ignored for most tractable problem sizes. For extremely large
problems with high accuracy requirements, Appendix B provides a method to restore
full relative precision for dimension split stencils with small \bfity .

Finally, the expressions in (3.26) and (3.27) are valid for any \bfity \in [0,1]2 so long
as p\scrL (z;y) has unique nonzero roots. As these assumptions are relaxed a variety of
pathological behaviors can occur. In this paper we focus only on the Mehrstellen
stencils of orders four and six, which have w\scrL = 1 and consequently cannot have a
repeated root inside the unit circle. However, for the fourth-order Mehrstellen stencil
the leading coefficient aw\scrL (\bfity ) vanishes on the set \scrY = \{ \bfity \in [0,1] | y2 + y3 = 2

3\} ,
and the characteristic polynomial p\scrL (z;\bfity ) has a root at z = 0. As \bfity approaches the
set \scrY there is a reciprocal pair of roots (r, r - 1) of p\scrL (z;\bfity ) that approaches (0,\infty ).
For n > m  - 1, the corresponding term in (3.22) approaches zero, and there is no
numerical instability. When n\leq m - 1 the corresponding term grows without bound,
but the G(n,\bfity ) remains finite due to cancellation. To maintain numerical stability,
that cancellation must be removed by algebraic manipulation of (3.22). Noting that
m= 1 for the fourth-order stencil and that both p\scrL (z;\bfity ) and p\scrR (z;\bfity ) are quadratic,
we make the rearrangement

G(0;\bfity ) =

\biggl( 
r

a1(\bfity )

\biggr) \biggl( 
b0(\bfity ) + 2b1(\bfity )r

r2  - 1

\biggr) 
.(3.28)

Here we have used the fact that r and r - 1 are the only roots of p\scrL (z;\bfity ), so that
p\prime \scrL (r;\bfity ) = a1(\bfity )(r  - r - 1). We determine r via the sole root of q(\lambda ;\bfity ) given by \lambda =
 - a0(\bfity )/2a1(\bfity ); when \lambda becomes large, r can be calculated with the series expansion

r=
1

2
\lambda  - 1 +

1

8
\lambda  - 3 +

1

16
\lambda  - 5 +

5

128
\lambda  - 7 +

7

256
\lambda  - 9 +\scrO (\lambda  - 11),(3.29)

which can be derived from (3.21). In this form the ratio r/a1(\bfity ) is numerically
stable and approaches  - 1/a0(\bfity ) as \bfity \rightarrow \scrY , allowing G(0,\bfity ) to be evaluated with full
precision.

3.2.2. Dimension-split stencils. For a dimension-split stencil with coefficients
\{ aj\} wj=1 the polynomial p\scrL (z;\bfity ) can be expressed in the simplified form

p\scrL (z;\bfity ) = p(z; c)\equiv czw +

w\sum 
j= - w

ajz
j+w,(3.30)

where the dependence on \bfity is replaced by a dependence on c= \sigma (k1)+\sigma (k2), a scalar
parameter taking values in the interval [0,2\sigma max]. The polynomial p(z; c) inherits
all the properties of p\scrL described in the previous section. Additionally, because the
leading coefficient aj is constant and nonzero, the polynomial p(z; c) has exactly w
nonzero roots (counted with their multiplicities) inside the unit circle for c \not = 0, and
exactly w - 1 roots inside the unit circle for c= 0. The corresponding polynomial

q(\lambda ; c)\equiv c+ 2

w\sum 
i=1

aj (Tj(\lambda ) - 1) =
p(z; c)

zw
(3.31)

depends on c only through the constant term, and can be conveniently written as
q(\lambda ) + c, where q(\lambda ) \equiv q(\lambda ; 0). When the roots \{ \lambda i\} of q(\lambda ; c) are distinct, the roots
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HIGH-ORDER LATTICE GREEN'S FUNCTIONS 37

Table 4
The polynomials q(\lambda ) for stencils of orders two through eight.

Order q(\lambda )

2  - 2\lambda + 2

4 1
3
(\lambda 2  - 8\lambda + 7)

6 1
45

( - 4\lambda 3 + 27\lambda 2  - 132\lambda + 109)

8 1
315

(9\lambda 4  - 64\lambda 3 + 243\lambda 2  - 960\lambda + 772)

\{ ri\} of p(z; c) are distinct as well, and after some simplification the LGF can be
written in the straightforward form

G(n; c) =

w\sum 
i=1

rn+w - 1
i

p\prime (ri; c)
= - 

w\sum 
i=1

rni
q\prime (\lambda i)

\surd 
\lambda i  - 1

\surd 
\lambda i + 1

.(3.32)

For the dimension-split stencils of orders two through eight the polynomials q(\lambda ) are
listed in Table 4, and the roots of q(\lambda ; c) are given explicitly as a function of the
parameter c in Appendix C.

For the fourth- and eighth-order dimension split stencils, p(z; c) has a repeated
root for a given value of c > 0, here denoted c\ast . The corresponding value \lambda \ast is a
repeated root of q(\lambda ; c\ast ) as well. For nearby values c = c\ast + \delta , the repeated root
splits into either two real roots r1, r2 = \=r \pm \epsilon or a conjugate pair r1, r2 = \=r \pm i\epsilon 
with \epsilon \sim 

\surd 
\delta . This introduces a catastrophic cancellation between the corresponding

terms in (3.32), destroying the precision of the LGF. For moderately small \delta , the
terms in (3.32) corresponding to r1 and r2 can be rewritten to restore numerical
stability by taking advantage of the factorization p(z; c) = aw

\prod 2w
j=1(z  - rj). After

some simplification,

2\sum 
j=1

rn+w - 1
j

p\prime (rj ; c)
=

f(r1) - f(r2)

r1  - r2
with f(z) =

zn+w - 1

aw
\prod 2w

j=3(z  - rj)
.(3.33)

Considering that f(z)\sim \scrO (zn) and f \prime (z)\sim \scrO (nzn) for larger n, the expression above
has relative precision that is \scrO (\epsilon m/n

\surd 
\delta ), where \epsilon m represents the relative machine

precision. In double precision arithmetic, this equates to a relative accuracy of 10 - 14

whenever \delta n2 \gtrsim 10 - 4.
Alternatively, the LGF can be expanded in a Taylor series about c = c\ast . Differ-

entiating (3.32) with respect to c yields

G(j)(n, c\ast ) = ( - 1)j
j!

2\pi 

\int \pi 

 - \pi 

cos(nk)

(\sigma (k) + c\ast )j+1
dk=

( - 1)jj!

2\pi i

\oint 
zn+(j+1)w - 1

p(z; c\ast )j+1
dz,(3.34)

where the superscript inG(j) implies differentiation with respect to c. The poles of this
integrand are well separated: where p(z; c\ast ) has a single root, the integrand has a pole
of order j+1, and where p(z; c\ast ) has a repeated root the integrand I(j)(z,n) has a pole
of order 2j+2. Consequently, (3.34) can evaluated without catastrophic cancellation
using the method of residues. For large stencils and large j the computation of residues
is tedious and most easily evaluated with a computer algebra system. Once they are
known, full LGF can be accurately evaluated with the Taylor expansion

G(n, c) =

m - 1\sum 
j=0

\delta j

j!
G(j)(n, c\ast ) +\scrO (\delta m\=rnn2m+1).(3.35)
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38 JAMES GABBARD AND WIM M. VAN REES

The derivatives G(j)(n, c\ast ) needed to evaluate (3.35) for the fourth- and eight-order
dimension-split stencils are given explicitly in Appendix C.

3.3. Alterations for 2D domains. For 2D domains with one unbounded di-
mension the calculation of the LGF for general or dimension-split stencils is fully
analogous to the 3D case. For a fully unbounded 2D domain, the LGF is defined by
the integral

G(n1, n2) =
1

(2\pi )2

\int 
[ - \pi ,\pi ]2

ei(n1k1+n2k2)

\sigma (k1) + \sigma (k2)
dk1 dk2.(3.36)

Here the integrand has a singularity proportional to 1/| k| 2 at the origin, which is
not integrable. The standard strategy for avoiding this singularity is to calculate the
relative quantity G(n1, n2)  - G(0,0), which is finite for all n1 and n2 [29]. For a
general stencil, the quantity (ein\cdot \bfitk  - 1) replaces ein\cdot \bfitk in the numerator of (3.4). For
dimension-split stencils the calculation of \scrI \sigma ,n(t) remains unchanged, and the LGF is
defined by the integral

G(n) =

\int T

0

\bigl[ 
\scrI \sigma ,n1

(t)\scrI \sigma ,n2
(t) - \scrI \sigma ,0(t)2

\bigr] 
dt+

1

4\pi 

\infty \sum 
j=1

g\sigma ,j(n)T
 - j ,(3.37)

where the multivariate polynomials g\sigma ,j(n) are defined by

g\sigma ,j(n1, n2) =
1

j

\sum 
\ell 1+\ell 2=j

[b\sigma ,\ell 1(n1)b\sigma ,\ell 2(n2) - b\sigma ,\ell 1(0)b\sigma ,\ell 2(0)] .(3.38)

Finally, for 2D domains the far-field expansion provided by Martinsson and Rodin in
[29] is known only up to a fixed constant which varies from stencil to stencil. The
constant can be determined by insisting that the evaluation by quadrature and the
evaluation by series expansion coincide at some predetermined point (n1, n2) for which
both strategies are accurate.

4. Results. The computation of LGF values for fully unbounded domains is
implemented in Julia within the package ExpandLGF.jl, which is open source and
available online.1 The calculation of asymptotic expansions relies on the fast symbolic
computations provided AbstractAlgebra.jl [11], which are translated into optimized
callable Julia functions using Symbolics.jl [17]. The 1D numerical quadrature used
to evaluate the I\sigma ,n(t) is performed using the adaptive Gaussian quadrature routines in
QuadGK.jl [24], while the 3D quadrature required to evaluate the LGF for Mehrstellen
stencils is performed with an algorithm from Genz and Malik [13] implemented in
HCubature.jl [23]. For domains with one unbounded direction, the expressions given
in the appendix are implemented in a C++ header that is available alongside the Julia
package.

4.1. Residuals in an unbounded domain. One of the advantages of solving
the Poisson equation via convolution with an LGF is that the solution exactly satisfies
the discretized system \scrL u = \scrR f , which may have its own conservation or positivity
properties that mimic those of the continuous PDE. To test the degree of exactness
in the approximations \~G(n) calculated with the algorithms developed in section 3, we
evaluate the residual function R(n)\equiv [\scrL \~G](n) - [\scrR \delta ](n) on a box [0,N ]3 and record

1See github.com/vanreeslab/ExpandLGF.jl
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HIGH-ORDER LATTICE GREEN'S FUNCTIONS 39

Table 5
Computational cost and maximum residual obtained when evaluating the LGF on a 3D un-

bounded domain of size N = 128. n\mathrm{m}\mathrm{a}\mathrm{x} indicates the radius beyond which the LGF is computed
via far-field expansion, and N\mathrm{e}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{s} indicates the number of evaluations necessary to fill the region
| n| <n\mathrm{m}\mathrm{a}\mathrm{x} after accounting for symmetry. The final column indicates the location of the maximum
residual within the domain.

Stencil n\mathrm{m}\mathrm{a}\mathrm{x} N\mathrm{e}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{s} Precomputation time R\mathrm{m}\mathrm{a}\mathrm{x} \| n\mathrm{r}\mathrm{e}\mathrm{s}\| 2
LGF2 19 779 11.5 s 2.26\times 10 - 15 19.2

LGF4 18 672 14.1s 2.59\times 10 - 15 18.2
LGF6 18 672 14.5 s 2.70\times 10 - 15 18.2

LGF8 18 672 14.9 s 2.42\times 10 - 15 18.2

MEH4 10 141 9.43\times 103 s 1.97\times 10 - 12 10.4
MEH6 9 106 6.28\times 103 s 8.09\times 10 - 13 9.0

the maximum absolute residual Rmax \equiv max\bfitn \in [0,N ]3 | R(\bfitn )| as well as its location
nres \equiv argmax\bfitn \in [0,N ]3 | R(\bfitn )| . For dimension-split stencils, the region | n| < nmax

is precomputed using the algorithm developed in section 3.1 with an absolute error
tolerance of 10 - 15, nearly double precision. For Mehrstellen stencils, this region is
precomputed with 3D adaptive quadrature using a larger absolute error tolerance of
10 - 12, which is achievable in a few hours on a laptop computer. The threshold nmax is
chosen so that a far-field expansion accurate to \scrO (| n|  - 19) will meet the same absolute
error tolerance for | n| >nmax, and the remaining n that fall in the box n\in [0,63]3 are
precomputed using this expansion. All other evaluations of G(n) are performed with
a far-field expansion that is accurate to \scrO (| n|  - 11), which is sufficient for full double
precision accuracy.

Table 5 lists the maximum absolute residual Rmax observed within a computa-
tional domain of size N = 128 for each stencil considered in this work, along with
the time required to precompute the region | n| \leq nmax on a single CPU. In all cases
the location of the maximum residual satisfies \| nres\| 2 \approx nmax, indicating that the
largest residuals occur on the boundary between near-field and far-field evaluation
strategies. As expected, the maximum residual for each case is of the same order of
magnitude as the absolute error tolerance. The precomputation times demonstrate
a speedup of two orders of magnitude for dimension-split stencils compared to the
Mehrstellen stencils, even while the former are computed with significantly tighter
error tolerances. While runtimes are of secondary importance for data that can be
precomputed and stored, we emphasize that the cost of 3D adaptive quadrature is
\scrO (N3

sing), where Nsing is the cost of 1D quadrature with a singular integrand and
specified error tolerance. The algorithm developed in section 3.1.2 reduces this cost
to \scrO (N2), where N is the cost of quadrature with a smooth integrand and the same
error tolerance. This reduction in complexity is essential for computations with tight
error tolerances and correspondingly high Nsing, and allows for precomputations with
near machine-precision accuracy on a laptop computer.

4.2. Residuals with one unbounded dimension. To measure the residuals
for LGFs on domains with one unbounded direction, we fix a domain size of N3 points
and let \scrK = \{ 2\pi n/N, 0 \leq n < N\} be the set of wavenumbers appearing in a discrete
Fourier transform along each dimension of the domain. The partially transformed
LGF G(n1, k2, k3) is evaluated for all 0\leq n<N and all k2, k3 \in \scrK using the analytical
expressions provided in Appendix C, and the corresponding real-space LGF is defined
via the inverse Fourier transform
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40 JAMES GABBARD AND WIM M. VAN REES

Table 6
Maximum absolute residuals for domains with one periodic dimension.

N LGF2 LGF4 LGF6 LGF8 MEH4 MEH6

30 3.31\times 10 - 16 8.28\times 10 - 16 4.44\times 10 - 16 1.09\times 10 - 15 3.41\times 10 - 14 3.83\times 10 - 15

56 1.38\times 10 - 16 4.12\times 10 - 16 2.76\times 10 - 16 5.04\times 10 - 16 1.07\times 10 - 14 3.11\times 10 - 15

176 2.22\times 10 - 16 1.68\times 10 - 16 2.78\times 10 - 16 3.31\times 10 - 16 3.86\times 10 - 15 9.99\times 10 - 16

416 2.22\times 10 - 16 2.22\times 10 - 16 2.22\times 10 - 16 4.44\times 10 - 16 1.84\times 10 - 15 7.09\times 10 - 16

768 6.25\times 10 - 17 2.22\times 10 - 16 4.44\times 10 - 16 8.88\times 10 - 16 1.51\times 10 - 15 3.89\times 10 - 16

1024 1.17\times 10 - 16 1.46\times 10 - 16 4.44\times 10 - 16 4.44\times 10 - 16 9.65\times 10 - 16 4.44\times 10 - 16

G(n) =
1

N2

\sum 
k2,k3\in \scrK 

G(n1, k2, k3)e
i(n2k2+n3k3).(4.1)

As discussed in section 3.2, there is no single analytical expression for G(n,k2, k3) that
holds uniformly across the domain k2, k3 \in [0,2\pi ]3. Particular values of (k2, k3) can
lead to a variety of singular or pathological behaviors, introducing numerical instabil-
ities that must be explicitly addressed. As a result the choice of domain size N , and
consequently the set of frequencies \scrK in the Fourier transform, can have a significant
effect on the residual. Table 6 lists the maximum absolute residuals encountered on
partially unbounded domains of size N3 for N \in \{ 30,56,176,416,768,1024\} and for
each stencil listed in section 2. The domains are chosen so that no domain size di-
vides another, leading to corresponding sets \scrK that contain frequencies unique to that
domain. The maximum residual is at most 1.09\times 10 - 15 for dimension-split stencils
across all domain sizes, which is nearly machine precision. For Mehrstellen stencils
the maximum residual decreases consistently with increasing domain size, and takes
a maximum value of 3.41\times 10 - 14 for MEH4 on a domain of size 303. We attribute
the decrease in error to the factor of 1/N2 in (4.1), which diminishes the influence
that any single wavenumber (k2, k3) can have on the full solution.

4.3. Convergence of Poisson solutions. To demonstrate the utility of LGFs
in solving a discretized Poisson equation, we consider the continuous Poisson problem
 - \nabla 2u= f with manufactured solution u= u1(x1)u2(x2)u3(x3) and the corresponding
right-hand side f = - u\prime \prime 

1(x1)u2(x2)u3(x3) - u1(x1)u
\prime \prime 
2(x2)u3(x3) - u1(x1)u2(x2)u

\prime \prime 
3(x3).

The form of ui(xi) varies with the boundary condition along dimension i: for periodic
or unbounded directions, the corresponding expressions are

uper(x) = exp

\biggl( 
sin

\biggl( 
8\pi x

L

\biggr) \biggr) 
 - 1, uunb(x) = exp

\Biggl( 
10

\Biggl( 
1 - 1

1 - 
\bigl( 
2x
L  - 1

\bigr) 2
\Biggr) \Biggr) 

.(4.2)

Similar manufactured solutions are used for validation in [30, 4, 1], though we have
replaced the sinusoidal uper(x) used by these authors with an exponentiated sinusoid
to generate a richer frequency content along each periodic dimension. Discretely, we
consider a computational domain of size [0,L]3 with grid spacing h = L/N . The
resulting N3 grid points are placed at coordinates xi = (i + 1

2 )h for 0 \leq i \leq N  - 1
along each axis, and the right-hand side f is evaluated at each grid point based on the
expressions given in (4.2). The approximate solution is obtained by convolving the
right-hand side with the LGF for a given finite difference scheme and set of boundary
conditions, using an FFT-based convolution provided by the software package FLUPS
[4]. The solve is repeated with a range of difference schemes and resolutions, and for
each solution we record the maximum pointwise error between the numerical solution
and the manufactured solution.
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(a) Fully unbounded domain.
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(b) One dimension unbounded.

Fig. 1. Convergence data for the 3D Poisson problem with stencils LGF2 ( ), LGF4 ( ),
MEH4 ( ), LGF6 ( ), MEH6 ( ), LGF8 ( ). Dashed lines indicate the expected order
of convergence for each difference scheme.

along each axis, and the right hand side f is evaluated at each grid point based on the
expressions given in (4.2). The approximate solution is obtained by convolving the
right hand side with the LGF for a given finite difference scheme and set of boundary
conditions, using an FFT-based convolution provided by the software package FLUPS
[4]. The solve is repeated with a range of difference schemes and resolutions, and for
each solution we record the maximum pointwise error between the numerical solution
and the manufactured solution.

Figure 1 provides convergence data for each of the dimension-split and Mehrstellen
stencils considered in this work for domains with either one or three unbounded di-
rections and resolutions from N = 32 to N = 1024. For the case of three unbounded
directions, the LGF is evaluated using the same methodology and absolute error
tolerances as in section 4.1. Each stencil achieves the expected order of conver-
gence on both domain types, with only LGF8 exhibiting a plateau in convergence
at higher resolutions. For the fully unbounded domain the plateau occurs at an error
of \epsilon \infty = 3.4 \times 10 - 15, which is of the same order of magnitude as the absolute error
tolerance used in the evaluation of the LGF. For the case of one unbounded direction
the plateau begins at \epsilon \infty = 1.8 \times 10 - 12, which is notably larger than the residuals
listed for LGF8 in Table 6. We attribute this discrepancy to an evaluation strategy
for G(n, k1, k2) that is consistent across all n, leading to an LGF evaluation error
that varies smoothly in space. This allows a cancellation of error to occurs when the
finite difference stencil is applied to the smooth error field to calculate the residual.
The error itself we attribute to a loss of precision due to cancellation in the analyti-
cal expression given in Appendix C, which contains polynomials composed of terms
with large coefficients and alternating signs. Applications which require accuracy be-
low 10 - 12 may require further manipulation of this expression or the use of higher
precision arithmetic.

5. Conclusions. The algorithms provided in this work extend existing tech-
niques to allow for high-accuracy computations of the LGFs associated with high-
order finite difference schemes, and to allow for the calculation of LGFs on domains
with one unbounded direction. For dimension-split stencils on unbounded domains,
the series expansions and evaluation strategy introduced in section 3.1 allow for LGF

Fig. 1. Convergence data for the 3D Poisson problem with stencils LGF2 ( ), LGF4
( ), MEH4 ( ), LGF6 ( ), MEH6 ( ), LGF8 ( ). Dashed lines indicate the ex-
pected order of convergence for each difference scheme. (Note: color appears only in the online
article.)

Figure 1 provides convergence data for each of the dimension-split and Mehrstellen
stencils considered in this work for domains with either one or three unbounded direc-
tions and resolutions from N = 32 to N = 1024. For the case of three unbounded direc-
tions, the LGF is evaluated using the same methodology and absolute error tolerances
as in section 4.1. Each stencil achieves the expected order of convergence on both do-
main types, with only LGF8 exhibiting a plateau in convergence at higher resolutions.
For the fully unbounded domain the plateau occurs at an error of \epsilon \infty = 3.4\times 10 - 15,
which is of the same order of magnitude as the absolute error tolerance used in the
evaluation of the LGF. For the case of one unbounded direction the plateau begins
at \epsilon \infty = 1.8 \times 10 - 12, which is notably larger than the residuals listed for LGF8 in
Table 6. We attribute this discrepancy to an evaluation strategy for G(n,k1, k2) that
is consistent across all n, leading to an LGF evaluation error that varies smoothly
in space. This allows a cancellation of error to occur when the finite difference sten-
cil is applied to the smooth error field to calculate the residual. The error itself we
attribute to a loss of precision due to cancellation in the analytical expression given
in Appendix C, which contains polynomials composed of terms with large coefficients
and alternating signs. Applications which require accuracy below 10 - 12 may require
further manipulation of this expression or the use of higher precision arithmetic.

5. Conclusions. The algorithms provided in this work extend existing tech-
niques to allow for high-accuracy computations of the LGFs associated with high-order
finite difference schemes, and to allow for the calculation of LGFs on domains with one
unbounded direction. For dimension-split stencils on unbounded domains, the series
expansions and evaluation strategy introduced in section 3.1 allow for LGF evalua-
tions that are more accurate than 3D quadrature and several hundred times faster.
For general stencils on domains with one unbounded direction, we provide numerically
stable closed-form expressions that allow for LGF evaluations with near machine-
precision accuracy. These algorithms are implemented in an efficient open-source
code, and their effectiveness has been demonstrated through numerical experiments.

While we have focused on six stencils in particular, four dimension-split and
two Mehrstellen, the provided algorithms are applicable to the majority of finite
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42 JAMES GABBARD AND WIM M. VAN REES

difference Poisson discretizations in common use. For unbounded domains, the exten-
sion requires minimal effort; the provided open-source code automatically generates
the necessary asymptotic expansions, compiles them to efficient executable code, and
switches between evaluation strategies to achieve a specified error tolerance. Far-field
expansions are also automatically generated to any desired precision, and converted
to C++ source files. For domains with one unbounded direction the extension is
more hands-on, and requires identifying and mitigating numerical instabilities in the
analytical expressions for the LGF. However, we believe the techniques introduced
to handle the six example stencils are likely to cover the majority of pathological
behavior encountered in practice.

There are several future directions left open by this work. We have not attempted
to improve the numerical quadrature necessary for Mehrstellen stencils on unbounded
domains, and there is likely room either for further analytical work or a specialized
quadrature algorithm to deliver machine-precision results at a greatly reduced cost.
We also have not investigated Mehrstellen stencils beyond sixth order, which have
larger stencil widths and could provide characteristic polynomials with pathological
behaviors not addressed in section 3.2. Finally, we have not addressed the computa-
tion of LGFs in domains with two unbounded dimensions and one periodic dimension,
which appear in the study of vortex tubes and the wakes of cylinders in 3D domains.
While the algorithm derived in section 3.1 can be applied effectively to precompute
near-field values, the derivation of a far-field approximation of the 2D Fourier integral
defining the LGF is an open question. Unlike the fully unbounded LGF, the LGF
with two unbounded directions is defined by a 2D Fourier integral with a smooth
integrand, providing neither a singularity nor a small parameter that could form the
basis of such an expansion. The work of [30] provides an approximate FFT-based
convolution technique for lattices with two unbounded directions that could circum-
vent this issue; however, as our interest is in exact solutions on unbounded lattices,
we have not pursued this approximation further.

Appendix A. Asymptotic integral expansions for dimension split sten-
cils. To recover an asymptotic expansion of (3.8) we rely on the fact that \sigma (k) - k2 =
\scrO (k4) as k\rightarrow 0. Separating the symbol into its leading-order quadratic behavior and
higher-order corrections gives

I\sigma ,n(t) =
1

2\pi 

\int \pi 

 - \pi 

e - tk2
\Bigl[ 
e - t(\sigma (k) - k2) cos(nk)

\Bigr] 
dk

=
1

2\pi 

\int \pi 

 - \pi 

e - tk2

\left[  \infty \sum 
j=0

k2j

(2j)!
a2j(n, t)

\right]  dk.(A.1)

Here the a2j(n, t) are polynomials in n and t, derived by expanding the bracketed
quantity as a power series in k. Explicitly,

a2j(n, t) =
d(2j)

dk(2j)

\bigm| \bigm| \bigm| \bigm| \bigm| 
k=0

\bigl[ 
exp( - t(\sigma (k) - k2)) cos(nk)

\bigr] 
.(A.2)

For large t, the Gaussian e - tk2

has support that is concentrated on the origin, so that
it is permissible to extend the limits of integration to [ - \infty ,\infty ]. With this extension
the integral represents a sum over moments of a Gaussian distribution, which can be
evaluated in closed form to give
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I\sigma ,n(t) =
1\surd 
4\pi t

\infty \sum 
j=0

a2j(n, t)

(2j)!!(2t)j
.(A.3)

The summation above is not a proper power series in t - 1, since the polynomials
a2j(n, t) depend on t. After combining like powers of t, we arrive at the expansion
given in (3.10) with coefficients bj(n).

In practice, the bj(n) for j < jmax are computed symbolically with a computer
algebra system. The a2j(n, t) for j < 2jmax are computed by constructing a power
series for  - t(\sigma (k) - k2)) truncated at \scrO (k4j\mathrm{m}\mathrm{a}\mathrm{x}), exponentiating that series, and mul-
tiplying by a power series expansion of cos(nk) with the same precision. Assembling
(A.3) and consolidating powers of t results in jmax complete terms of the series in
(3.10), and an additional jmax partially formed terms that are discarded.

Appendix B. Maintaining precision at small, nonzero wavenumbers.
The expressions for the LGF G(n, c) given in section 3.2.2 become numerically un-
stable for c \sim 0. In this case p(z; c) has a real root r1 that is very near z = 1,
and the derivative p\prime (r1; c) is small. Consequently p\prime (r1; c) suffers from catastrophic
cancellation when computed in a naive manner. This can be circumvented by writing

p\prime (r1; c) = aw(r1  - r - 1
1 )

w\sum 
i=2

(r1  - ri)(r1  - r - 1
i ),(B.1)

which isolates the cancellation in the term (r1  - r - 1
1 ). To calculate this precisely, we

note that for small positive values of c there is a root of q(\lambda ) + c= 0 near \lambda = 1, and
by repeatedly differentiating the equation q(\lambda )+ c= 0 the root can be expressed as a
power series in c. Letting qj = q(j)(1) for notational simplicity,

\lambda  - 1 =
c

2
 - c2

16
q2 +

c3

192
(3q22  - 2q3) +

c4

3072
( - 4q4  - 15q32 + 20q3q2)(B.2)

+
c5

61440
( - 8q5 + 40q23 + 105q42 + 60q4q2  - 210q3q

2
2) +\scrO (c6).

The corresponding root r can then be expressed as r - 1 = (\lambda  - 1) - 
\sqrt{} 

(\lambda  - 1)2 + 2(\lambda  - 1),
which does not suffer from catastrophic cancellation. The quantity (r - r - 1) is then
computed precisely via a Taylor expansion about r= 1. Similarly, the quantity rn can
also suffer from a loss of precision when n is large and r\approx 1. To avoid this we instead
compute exp(n log(r)), obtaining the logarithm with a Taylor expansion about r= 1.

Appendix C. Explicit expressions for the LGF with one unbounded
dimension.

LGF4. For this kernel, the polynomial p(z; c) has two roots inside the unit circle.
The polynomial q(\lambda ) + c= 0 has two roots given by

\lambda = 4\pm 
\surd 
9 - 3c.(C.1)

For c= 0, the roots in or on the unit circle are r= 1 and r= 7 - 4
\surd 
3, so that the full

LGF is

G4(n) = - n

2
+K(rn  - 1) with r= 7 - 4

\surd 
3 and K =

12r2

(r - 1)3(r+ 1)
.(C.2)
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For c < 10 - 3, the root of q(\lambda ) + c = 0 closest to unity is computed with the power
series

\lambda = 1+
c

2
+

c2

24
+

c3

144
+

5c4

3456
+

7c5

20736
+

7c6

82944
+

11c7

497664
+\scrO (c8).(C.3)

At c\ast = 3, there is a single repeated root \=r = 4  - 
\surd 
15 inside the unit circle. For

| c - c\ast | < 10 - 5 the computation relies on an expansion of G(n, c) about c= c\ast :

G(0)(n, c\ast ) = \=rn
\biggl( 

4

5
\surd 
15

+
n

5

\biggr) 
,

G(1)(n, c\ast ) = - \=rn
\biggl( 

14

75
\surd 
15

+
2

25
n+

4

25
\surd 
15

n2 +
n3

150

\biggr) 
,

G(2)(n, c\ast ) = 2\=rn
\biggl( 

901

18750
\surd 
15

+
74

3125
n+

253

3750
\surd 
15

n2+
23

3750
n3+

1

250
\surd 
15

n4+
n5

15000

\biggr) 
,

G(3)(n, c\ast ) = - 6\=rn
\biggl( 

37313

2812500
\surd 
15

+
11267

1640625
n+

3167

140625
\surd 
15

n2+
1

375
n3+

31

11250
\surd 
15

n4

+
31

281250
n5 +

1

28125
\surd 
15

n6 +
1

3150000
n7

\biggr) 
.

For all other c \in [0, c\ast ] there are two real roots, and the LGF is computed using the
numerically stable form

G4(n) =
f(r1) - f(r2)

r1  - r2
with f(z) =

12zn+1

(z  - r - 1
1 )(z  - r - 1

2 )
.(C.4)

Finally, for all other c \in [c\ast , 2\sigma max] the two roots form conjugate pair, and the LGF
is computed using the oscillatory form given in (3.23).

LGF6. For this kernel, the polynomial p(z; c) has one real root and one conjugate
pair inside the unit circle. The cubic q(\lambda )+ c= 0 has one real and two complex roots,
given in closed form by

\lambda =
1

4

\biggl( 
9 + \xi  - 95

\xi 

\biggr) 
with \xi 3 = 360c - 775 + 60

\sqrt{} 
36c2  - 155c+ 405.(C.5)

Here \xi ranges over all three possible complex values, giving one real root and a
conjugate pair. When c= 0, the expression reduces to \lambda = 1 and \lambda = 1

8 (23\pm 9
\surd 
15i).

For small c the root closest to unity is calculated with the power series

\lambda = 1+
c

2
+

c2

24
+

c3

720
 - c4

1152
 - 149c5

518400
 - 259c6

6220800
+

163c7

62208000
+\scrO (c8).(C.6)

For all other values of c in [0,2\sigma max] the roots of p(z; c) are well separated. The full
LGF is calculated using (3.32), with the contribution from the conjugate pair reduced
to real oscillatory form as in (3.23).

LGF8. For the eight-order LGF, the polynomial q(\lambda )+c= 0 has four roots given
explicitly by

\lambda =
16

9
 - \eta 

2
\pm 1

2

\sqrt{} 
 - 434

81
 - 81088

729\eta 
 - \eta 2 with \eta =\pm 

\sqrt{} 
\xi 

9
+

3780c - 4655

9\xi 
 - 434

81
and

\xi 3 = - 273420c+1520225+35
\sqrt{} 
1968941520 - 879221700c+223915104c2  - 44089920c3.
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For c < 10 - 3, the root closest to unity is calculated with the power series

\lambda = 1+
c

2
+

c2

24
+

c3

720
+

c4

40320
+

577c5

3628800
+

389c6

6220800
+

34987c7

3048192000
+\scrO (c8).(C.7)

The polynomial p(z; c) has a repeated root only for the value c\ast = 3.204471924659898,
which is the single real root of the cubic appearing in the above definition of \xi . For
c < c\ast there are two real roots and one conjugate pair lying inside the unit circle,
while for c\ast < c < 2\sigma max there are two conjugate pairs inside the unit circle. For
c= c\ast there is a repeated root r0 and a conjugate pair r1, \=r1 = \rho e\pm i\theta with

r0 = 0.1401609439298625, \rho = 0.12718191072648583, and \theta = 1.5912866598657263.
(C.8)

The expansion of the LGF about c= c\ast takes the form

G(j)(n, c\ast ) = rn0

2j+1\sum 
k=0

ajkn
k + \rho n cos(n\theta )

j\sum 
k=0

ujkn
k + \rho n sin(n\theta )

j\sum 
k=0

vjkn
k,(C.9)

where ajk, ujk, and vjk are constants derived from (3.34) (see the open-source imple-
mentation for double-precision values).

Mehrstellen 4. The numerically stable symbols for the fourth-order Mehrstellen
stencil are

\~\sigma \scrL (\bfity ) = 4(y1 + y2 + y3) - 
8

3
(y1y2 + y1y3 + y2y3),(C.10)

\~\sigma \scrR (\bfity ) = 1 - 1

3
(y1 + y2 + y3).(C.11)

For computations with one unbounded dimension, the coefficients of p\scrL (z;\bfity ) are

a0(\bfity ) = 2 - 8

3
(y2y3  - y2  - y3), a1(\bfity ) = - 1 +

2

3
(y2 + y3),(C.12)

while the coefficients of p\scrR (z;\bfity ) are

b0(\bfity ) =
5

6
 - 1

3
(y2 + y3), b1(\bfity ) =

1

12
.(C.13)

The LGF is given in closed form by (3.22), and after rearranging for numerical stability

G(n,0) = - n

2
 - 1

12
\delta (n), G(n,\bfity ) =

\left\{   
rnp\scrR (r;\bfity )
a1(\bfity )(r2 - 1) , n \not = 0,

rp\prime 
\scrR (r;\bfity )

a1(\bfity )(r2 - 1) , n= 0.
(C.14)

Here r is the root of p\scrL (z;\bfity ) corresponding to \lambda = - a0(\bfity )/2a1(\bfity ). When y1+ y2 =
3
2

the polynomial p\scrL (z;\bfity ) has a root at z = 0, and the above should be replaced by

G(n,y) = \delta (n)
b0(\bfity )

a0(\bfity )
+ \delta (n - 1)

b1(\bfity )

a0(\bfity )
.(C.15)

Mehrstellen 6. The numerically stable symbols for the sixth-order Mehrstellen
stencil are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

4/
24

 to
 1

8.
10

.7
5.

19
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



46 JAMES GABBARD AND WIM M. VAN REES

\~\sigma \scrL (\bfity ) = 4(y1 + y2 + y3) - 
8

3
(y1y2 + y1y3 + y2y3) +

32

15
y1y2y3,(C.16)

\~\sigma \scrR (\bfity ) = 1 - 1

3
(y1 + y2 + y3) - 

1

15
(y21 + y22 + y23) +

8

45
(y1y2 + y1y3 + y2y3).(C.17)

For computations with one unbounded dimension, the coefficients of p\scrL (z;\bfity ) are

a0(\bfity ) = 2+
8

3
(y2 + y3) - 

8

5
y2y3, a1(\bfity ) = - 1 +

2

3
(y2 + y3) - 

8

15
y2y3,(C.18)

while the coefficients of p\scrR (z;\bfity ) are

b0(\bfity ) = - 1

15
(y22 + y23) +

8

45
y2y3  - 

11

45
(y2 + y3) +

97

120
,(C.19)

b1(\bfity ) = - 2

45
(y2 + y3) +

1

10
, b2(\bfity ) = - 1

240
.

The LGF in closed from is then given by

G(n,\bfity ) =
rn - 1p\scrR (r;\bfity )

a1(\bfity )(r2  - 1)
+ \delta (n)

b1(\bfity )a1(\bfity ) - b2(\bfity )a0(\bfity )

a1(\bfity )2
+ \delta (n - 1)

b2(\bfity )

a1(\bfity )
,(C.20)

where r is the root of p\scrL (z;\bfity ) corresponding to \lambda = - a0(\bfity )/2a1(\bfity ).
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