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We consider the periodic gaits of a microswimmer formed by two rotating cylinders, placed apart at a fixed width.
Through a combination of theoretical arguments and numerical simulations, we derive semi-analytic expressions for
system’s instantaneous translational and rotational velocities, as a function of the rotational speeds of each cylinder. We
can then integrate these relations in time to find the speed and efficiency of the swimmer for any imposed gait. Here we
focus particularly on identifying the periodic gaits that lead to the highest efficiency. To do so, we consider three stroke
parametrizations in detail: alternating strokes, where only one cylinder rotates at a time; titled rectangle strokes, that
combine co- and counter-rotation phases; and smooth strokes represented through a set of Fourier series coefficients.
For each parametrization we compute maximum efficiency solutions using a numerical optimization approach. We find
that the parameters of the global optimum, and the associated efficiency value, depend on the average mechanical input
power. The efficiency asymptotes towards that of a steadily counter-rotating cylinder pair as the input power increases.
Finally, we address a possible three-dimensional extension of this system by evaluating the efficiency of a counter-
rotating three-dimensional (3D) cylinder pair with spherical end caps. We conclude that the counter-rotating cylinder
pair combines competitive efficiency values and offer high versatility with simplicity of geometry and actuation, and
thus could be a possible basis for engineered microswimmers.

I. INTRODUCTION

Locomotion at low Reynolds numbers has relevance in na-
ture and engineering. In nature, the swimming of micro-scale
organisms such as bacteria, algae, and protozoa is of inter-
est to understand their proliferation and interactions1. In bio-
engineering and healthcare, the viability of micro-robots is of
interest for delivering drugs through the bloodstream, or as a
way to sense or diagnose a patient’s condition2,3.

At these Reynolds numbers, viscous effects dominate over
inertial ones, so that the motion of such swimmers is governed
by the linear time-invariant Stokes equations. Starting from
the seminal work of Purcell 4 , a large collection of theoretical,
archetypal swimming models have been proposed that rely on
some combination of shape transformations. The conceptu-
ally simplest models are based on linked rigid bodies with a
small number of discrete degrees-of-freedom, such as Pur-
cell’s three-link swimmer4 and the three-sphere swimmer5,
which also have been experimentally realized6,7. More com-
plex models involve continuous surface deformations such as
undulations8,9 or tank-threading approaches10,11.

In two dimensions, a geometrically simple model involves
two disks whose centers are fixed at a set distance, each of
which rotates about its own axis. This swimmer can be in-
terpreted as a two-dimensional (2D) cross-section of Purcell’s
tank-threading torus4, or alternatively as a cross-section of a
pair of infinitely long three-dimensional cylinders. For the
latter interpretation, the swimming gait is fully captured with
rigid body rotations of each cylinder, which could provide an
attractively simple conceptual basis for robotic microswim-
mers.

a)Electronic mail: wvanrees@mit.edu

Compared to other model swimmers the cylinder pair is
unique in that, by steadily counter-rotating the cylinders, it
can achieve a steady rectilinear locomotion. This case has
been analysed by Leshansky and Kenneth 11 , who have fur-
ther provided analytic solutions for the counter-rotating cylin-
der pair’s behavior. They showed that the cylinder pair will
undergo a linear translation with speed a2Ω/W , with a the
cylinder radius, W the center-to-center width, and Ω the angu-
lar rotation speed of each cylinder. By changing the reference
frame, this result can also be found in the century-old work by
Jeffery 12 . The behavior of the counter-rotating cylinder pair
in Reynolds numbers of O(10)–O(100) was undertaken in
van Rees, Novati, and Koumoutsakos 13 by numerically solv-
ing the Navier-Stokes equations.

Our work here remains in the Stokes regime, and is fo-
cused on broadening the space of actuation patterns to include
unsteady periodic gaits, and investigate the resulting motion
patterns. We expect our results to explore the versatility of
the system and learn about a new set of gaits that can result
in rectilinear locomotion. Though the efficiency of unsteady
periodic gaits will always be bounded by that of the steady
counter-rotating solution, our analysis can aid comparisons
with other model systems, as well as inform potential exper-
imental applications that require maneuverability or periodic
actuation patterns.

To achieve this goal, in Section II we first present a
combined theoretical/numerical approach where we use the
method of regularized Stokeslets14 to extract geometry-
dependent coefficients, and then use a semi-analytical ap-
proach to efficiently compute the performance for individual
gaits. This enables us to perform numerical optimizations of
the cylinder pair gaits, similar to the approach of Tam and
Hosoi 15 , with low computational cost. In Section III we dis-
cuss the three types of gaits that we consider here, correspond-
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ing to squares, tilted-rectangles and smooth closed curves in
the rotation-angle phase space, respectively. The results for
the physical trajectories and efficiencies for these gaits are an-
alyzed in Section IV. In Section V we discuss the extension of
the 2D cylinder pair system to a 3D counter-rotating cylinder
pair, and explore for the first time the efficiency of this simple
system to three dimensions.

II. PROBLEM SETUP

A. Geometry and kinematics

a a

W/2 W/2

θ1(t) θ2(t)

êx

êy

FIG. 1. Sketch of the problem setup

Our geometry consists of two identical cylinders with ra-
dius a, positioned side by side at a fixed distance W , as
sketched in Fig. 1. The two cylinders are rotated about their
own centers by angles θ1(t) and θ2(t) respectively, with cor-
responding angular velocities θ̇1(t) and θ̇2(t). To ensure peri-
odic gaits, we impose the constraint that the net angle rotated
by each cylinder is zero after the gait period T , that is∫ T

0
θ̇1(t) dt =

∫ T

0
θ̇2(t) dt = 0. (1)

For convenience, we will set T = 1 throughout the rest of this
work, and focus on a single geometry characterized by W/a=
4.

B. Method of regularized Stokeslets

For the very low Reynolds numbers considered here the
fluid flow is governed by the Stokes equations:

µ∇
2u = ∇p− f (2)

∇ ·u = 0 (3)

where u denotes the velocity, p denotes the pressure and f
is the external forcing, which in our case is responsible for
enforcing the no-slip boundary conditions on the flow at the
surface of the cylinders.

To solve the Stokes flow around the cylinder pair, we use
the method of regularized-Stokeslets in two-dimensions14. In
this method, the boundary element problem is discretized us-
ing a set of singular forces distributed along the surface of the
object. Using a regularization of the forces with characteristic
length scale ε , a force field composed of N discrete forces can
be expressed as f(x) = ∑

N
k=1 fkφε(x− yk), where the index k

corresponds to the point at location yk on the boundary of the
object, with associated force vector fk. Following Cortez 14 ,
we choose the cutoff function to be

φε(x−y) =
3ε3

2π(|x−y|2 + ε2)5/2 (4)

with the regularization parameter ε . Using this approxima-
tion, the velocity field at any location x in the domain or on
the boundary, can be written as a discrete convolution14

u(x) =
N

∑
k=1

{
−fk

4πµ

[
ln
(
rk,ε + ε

)
− ε

(
rk,ε +2ε

)(
rk,ε + ε

)
rk,ε

]

+
1

4πµ
(fk ·rk)rk

[
rk,ε +2ε(

rk,ε + ε
)2 rk,ε

]} (5)

where rk = x− yk, rk = |rk|, and its regularization rk,ε =√
r2

k + ε2.
If the velocity on the boundary of the object is known, the

expression above leads to a 2N×2N algebraic system of equa-
tions that can be inverted for fk. Using fk, the velocity field at
any point in the domain can then be evaluated if desired.

In our case, we consider a self-propelled body with im-
posed wall rotational velocity. In the body-fixed coordinate,
the rigid-body motion is described by ucom = (ucom,vcom) and
θ̇com = θ̇comêz, which denote the linear and angular veloci-
ties of the cylinder pair’s center of mass respectively. For our
geometry, we can directly write the velocity on cylinder i at
angle θi as

ui = ucom + si
W
2

θ̇com

(
−sin(θcom)
cos(θcom)

)
+a(θ̇com + θ̇i)

(
−sin(θcom +θi)
cos(θcom +θi)

)
,

(6)

where i = 1,2, s1 =−1, and s2 =+1.
Furthermore, since the cylinder pair is self-propelled in a

Stokes flow, the net force and torque on the system are zero:∫
Γ

f ds = 0, (7)

∫
Γ

x× f ds = 0. (8)

Equations (7) and (8) represent 3 scalar constraint equa-
tions on the forces that supplement Eq. (6). This then results
in a closed linear system of size (2N + 3)× (2N + 3) for the
unknowns fk as well as the center of mass translational and an-
gular velocities. Given instantaneous angular velocities θ̇1(t)
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and θ̇2(t), the system is closed and we can solve for the cylin-
der pair’s translational and angular velocities. Given those, a
numerical integration in time provides the next center of mass
location and orientation. By iterating these steps we can find
the trajectory of the cylinder pair for an entire swimming cy-
cle, given the time evolution of θ̇1(t) and θ̇2(t).

C. Efficiency definition

In this work we wish to investigate the hydrodynamic
swimming efficiency of the cylinder pair with periodic gaits.
Typically the swimming efficiency is defined as the average
rate of useful work to the average mechanical power required
during a swimming cycle:

η
′ =

Φuseful

Φ̄
, (9)

where Φuseful is the power required to drag the swimmer in
a fixed configuration at the average velocity that would have
been achieved in a free-swimming cycle, and Φ̄ is the average
mechanical power expended in a swimming period.

In two-dimensional Stokes flow, though the self-propulsion
(swimming) problem is well-posed, the dragging problem is
not1. This makes the above definition of Φuseful inappropri-
ate for our two-dimensional configuration. Instead, we follow
Avron, Gat, and Kenneth 16 to provide the following alterna-
tive measure of efficiency for a 2D swimmer in Stokes flow:

η =
4πµū2

Φ̄
, (10)

where ū is the average velocity of the swimmer in one period
and Φ̄ still the average mechanical power expended in one
period. Maximizing this efficiency can be interpreted as min-
imizing the energy dissipated per unit swimming distance at
fixed average speed, or conversely as maximizing the distance
traveled for a given average power expense.

For the specific geometry considered here (W = 4a), an
analytic result of the steady-state efficiency for a counter-
rotating cylinder pair was found in Leshansky and Kenneth 11

to be η = 1
2

( a
W

)2, which for our choice of geometry (W/a =
4) gives 1/32 = 0.03125.

D. Symmetries

Since the Stokes equations are linear and time-independent,
for a fixed geometric configuration the center of mass ve-
locity and rotation will vary linearly with the deformation
velocities1,17. In particular, for our system, we can decom-
pose, at any time, the stroke velocities θ̇1(t) and θ̇2(t) into a
symmetric and an anti-symmetric component:

θ̇× =
1
2
(
θ̇1− θ̇2

)
(11)

θ̇‖ =
1
2
(
θ̇1 + θ̇2

)
, (12)

where θ̇× and θ̇‖ correspond to counter-rotation (symmet-
ric with respect to the line separating the cylinders) and co-
rotation (anti-symmetric) of the cylinders, respectively. Based
on the symmetries of the problem, for a cylinder pair as ori-
ented in Fig. 1, we pose that the center-of-mass velocity corre-
sponding to counter-rotation can only have a component along
the local êy direction, so that the local component ucom = 0 for
any gait. Furthermore, because of the linearity of the problem,
we have

vcom = A1(θ̇1− θ̇2), (13)

where A1 is a geometry-dependent proportionality constant.
As mentioned before, it has been found that for the counter-
rotating case vcom = a2Ω/W 11,12, where Ω is the angular
speed of each cylinder, so that we can directly evaluate A1 =
a2/2W .

Similarly, the center-of-mass velocity corresponding to co-
rotation can only have a rotational component, so that

θ̇com = A2(θ̇1 + θ̇2) (14)

with A2 the proportionality factor. Further, the instantaneous
mechanical power is a quadratic function of θ̇1(t), θ̇2(t),
which, taking into account the symmetries of the problem, re-
duces to

Φmech = B1(θ̇
2
1 + θ̇

2
2 )+B2θ̇1θ̇2, (15)

where B1 and B2 are geometry-dependent constants.
We can use the method of regularized Stokeslets to perform

a series of simulations of different combinations of θ̇1 and θ̇2,
and determine the constants A1, A2, B1, and B2 through a data-
fit of the results. The computation of the numerical values of
A1, A2, B1, B2 as a function of the separation length W is
discussed in Appendix A.

With the numerical values of these constants known, we can
find the velocity of the center of mass for any combination
of θ̇1 and θ̇2 simply by using relationships in Eq. (13) and
(14). This approach greatly reduces the numerical costs of
computing the cylinder pair’s trajectory for a given gait, since
it avoids the necessity to solve the Stokes flow at each time
step.

III. PARAMETRIZATION OF THE PERIODIC GAITS

In this section we explain the parametrization of the three
gaits considered here, corresponding to squares, tilted rectan-
gles, and titled smooth parametric curves in the phase-space
(Fig. 2, multimedia view). For the first two, we demon-
strate that we can provide closed-form expressions of the effi-
ciency in terms of the gait parameters and average mechanical
work Φ̄. For the smooth parametric curve, we explain the
parametrization and optimization approach.

A. Alternating strokes

Purcell’s three-link swimmer is characterized by a stroke
where only one of the left and right arm of the swimmer moves
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FIG. 2. Phase space diagrams and physical trajectories for the three
types of gaits considered here, plotted for the same nondimensional
average mechanical power Φ̄∗ = Φ̄/

(
µa2/T 2)= 104. The efficien-

cies for the (a) alternating stroke, (b) tilted-rectangle stroke, and (c)
smooth parametric optimization are 0.0088, 0.0125, 0.0167, respec-
tively. The blue dots in the phase space (left column) denote the start
and end points of the phase diagrams; the blue dots in the physical
space (right column) denote the end points of the physical trajec-
tories. All lengths are scaled with cylinder radius a. (Multimedia
view).

at a time, resulting in square shapes in the phase space4. For
our case of a cylinder pair, we define corresponding alternat-
ing strokes for which the two cylinders alternatively rotate by
an angular amplitude γ , with constant angular speed. This
leads to squares with side length 2γ in the phase space. To
achieve such alternating strokes, we parameterize the angular
velocities as

(
θ̇1(t), θ̇2(t)

)
=



(
θ̇alt,0

)
, 0 < t ≤ 1/4(

0,−θ̇alt
)
, 1/4 < t ≤ 1/2(

−θ̇alt,0
)
, 1/2 < t ≤ 3/4(

0, θ̇alt
)
, 3/4 < t ≤ 1

(16)

where θ̇alt = 8γ . From Eq. (15), the instantaneous mechan-
ical power Φ = B1θ̇ 2

alt is constant throughout the cycle and
depends only on the rotation speed θ̇alt. We can use this to ex-

press the efficiency directly in terms of the average mechan-
ical power Φ̄ (see Appendix B), which gives the analytic ex-
pression for the efficiency of this stroke as

ηalt(Φ̄) =
64πµ

Φ̄

(
A1

A2

)2
1− cos

A2

4

√
Φ̄

B1

2

. (17)

B. Tilted-Rectangle strokes

With the aim of constructing a simple periodic gait with
high efficiency, we propose combining the two most basic ro-
tation patterns of the cylinder pair: counter-rotation and co-
rotation. Alternating these patterns results in rectangles tilted
at 45◦ in the phase space, and so we refer to these strokes
as tilted-rectangle (TR) strokes. We denote the constant an-
gular speed of the cylinders during the counter-rotation and
co-rotation phases as θ̇× and θ̇‖, respectively. The time frac-
tion spent in the counter-rotating part of the gait is t×. The
angular velocities can thus be written as

(
θ̇1(t), θ̇2(t)

)
=



(
θ̇‖, θ̇‖

)
, 0 < t ≤ (1− t×)/4(

θ̇×,−θ̇×
)
, (1− t×)/4 < t ≤ (1+ t×)/4(

−θ̇‖,−θ̇‖
)
, (1+ t×)/4 < t ≤ (3− t×)/4(

−θ̇×, θ̇×
)
, (3− t×)/4 < t ≤ (3+ t×)/4(

θ̇‖, θ̇‖
)
, (3+ t×)/4 < t ≤ 1

(18)

The gait is completely described by the choice of θ̇‖, θ̇×
and the time fraction spent in the counter-rotation phases t×.
Using equation Eq. (15), we have for this case Φ̄ = (2B1 +
B2)θ̇

2
‖ (1− t×)+(2B1−B2)θ̇

2
×t×, and so we can alternatively

replace t× with Φ̄ as the third free parameter.
The physical trajectories for the TR strokes simply consist

of two straight line segments of length L corresponding to the
counter-rotation phases (Fig. 2, middle (Multimedia view)).
The angle α between the length segments is determined by
the rate and duration of the co-rotation phase. We can directly
write down the definitions of L and α in terms of the control
parameters, leading to

L = A1|θ̇×|t×, (19)

α = A2|θ̇‖|(1− t×) (20)

where

t× =
Φ̄− (2B1 +B2)θ̇

2
‖

(2B1−B2)θ̇ 2
×− (2B1 +B2)θ̇ 2

‖
. (21)

The efficiency of the stroke is then

ηTR =
4πµ(2Lsin(α/2))2

Φ̄
, (22)
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5

with L and α defined above.
A special case that is worth considering occurs when the

center of mass rotation equals α = π , so that the trajectory
is a straight line. We can directly apply this constraint to the
efficiency definition to eliminate θ̇‖ to get

ηTR =
16πµ(A1|θ̇×|t×)2

Φ̄
. (23)

C. Smooth parametric strokes

Under the linear and time-independent Stokes equations,
our system has two mirror symmetries that correspond to re-
flection and rotation of the gait. In phase-space, these sym-
metries are given by the straight lines described by θ1 = θ2
and θ1 = −θ2. We expect optimal strokes to satisfy these
symmetries and, following Tam and Hosoi 15 , we therefore
parametrize the rotation rates using Fourier cosine and sine
series in a frame (θ̂1, θ̂2) that is rotated clockwise by π/4:

θ̂1 =
M

∑
p=1,odd

ap sin(2π pt) (24)

θ̂2 =
M

∑
p=1,odd

bp cos(2π pt). (25)

To evaluate the values of (θ1,θ2), we transform the expres-
sions back to the original frame (θ1, θ2) to obtain

θ1(t) =
1√
2

M

∑
p=1, odd

ap sin(2π pt)−bp cos(2π pt) (26)

θ2(t) =
1√
2

M

∑
p=1, odd

ap sin(2π pt)+bp cos(2π pt). (27)

We again rely on the expressions (13), (14), and (15) to effi-
ciently compute the center-of-mass velocities and power dur-
ing the stroke for any set of coefficients {ap,bp}, and integrate
these to find the efficiency. Since we have no closed-form so-
lution, we use numerical optimization to find the values of the
Fourier coefficients which give the maximum swimming effi-
ciency, for a range of values of nondimensional average me-
chanical power Φ̄∗ = Φ̄/(µa2/T 2). The optimization is per-
formed using the MATLAB built-in function fminunc, which
finds a minimum of a unconstrained multivariable function us-
ing the BFGS Quasi-Newton method with a cubic line search
procedure. To fix the value of Φ̄∗ in each optimization, the
trial input {ap,bp} is first scaled to get the desired value of
Φ̄∗. For example, if the input {ap,bp} leads to an average me-
chanical power Φ̄∗ and the desired value is Φ̄∗0, then according
to Eq. 15 we can rescale the coefficients to {C ap,C bP}, with

the scale factor C =
√

Φ̄∗0/Φ̄∗. Finally, we increase the num-
ber of coefficients M until the optimal stroke has converged,
which is further detailed in Appendix D.

IV. OPTIMAL GAITS

The efficiencies η versus the nondimensional average me-
chanical power Φ̄∗ for the three different types of strokes are
plotted in Fig. 3. We also plot the analytic result for the ef-
ficiency of the steady-state counter-rotating cylinder pair, as
derived in Leshansky and Kenneth 11 . We discuss the results
for each stroke below.

101 102 103 104 105 106 107

Φ̄∗

0.000

0.005

0.010

0.015

0.020

0.025

0.030

η

general optimization

titled rectangle

alternating strokes

counter-rotating

FIG. 3. Optimal efficiency versus the nondimensional average me-
chanical work Φ̄∗ = Φ̄/

(
µa2/T 2) for the three different gaits, as

well as the efficiency of the steady-state counter-rotating cylinder
pair11.

A. Alternating strokes

For the alternating strokes, there exists a global maximum
in efficiency at a finite value of nondimensional average me-
chanical power Φ̄∗. Furthermore, the plot shows a series of
local maxima and minima beyond the global optimum, which
is a result of the nature of the alternating strokes. Each part
of this stroke leads to a circular arc trajectory of the center
of mass of the cylinder pair, and so the complete path of the
center of mass during a swimming cycle consists of four con-
nected arcs. At the optimum (Fig. 4, solid black line), each
circular arc sweeps about 2.28 rads, close to three quarters of
a semicircle. The sinusoidal nature of the alternating strokes
leads to several local peaks that coincide with similar motions
as the global optimum, but with multiple additional complete
rotations within each part of the stroke (Fig. 4, gray line).
Troughs appear in between, for instance in the case where
each circular arc is exactly a circle – in this case, no net mo-
tion is achieved and the efficiency is identically zero (Fig. 4,
dashed line).

B. Tilted-rectangle strokes

For the general TR strokes, the optimal efficiency ηTR in-
creases as a function of the nondimensional average mechani-
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FIG. 4. The multiple local extrema of the alternating strokes. The
black solid line is for the global maximum, the dashed black line
for the first local minimum (trough), the solid gray line for the first
local maximum (peak). The blue dots in the phase space (left figure)
denote the start and end points of the phase diagrams. The red and
green dots in the figures in the right column denote the start and
end points of the physical trajectories. All lengths are scaled with
cylinder radius a.

cal power Φ̄∗, asymptoting to the value of the counter-rotating
efficiency from below as shown in Fig. 3. The optimal strokes
exploit the fact that the counter-rotating gait θ̇1 = −θ̇2 is the
most efficient way to move, and so the phase space diagrams
correspond to rectangles that keep elongating with increasing
Φ̄∗.

Interestingly, the value of the turning angle α for the op-
timal efficiencies is always slightly less than π (shown in
Fig. 12 in Appendix C), i.e. the cylinder pair does not perform
a complete flip when traversing the short axes of the rectan-
gle in phase space. Figure 5 shows a comparison between an
optimal case with unrestricted α (solid lines), and an optimal
case where α = π (dashed lines). The trajectory of the unre-
stricted case is skewed and therefore a longer distance needs
to be traversed for the same net displacement compared to
the restricted case. However, the slight reduction in energy
used during the turning maneuver can now be used during
the counter-rotating phase, leading to a net displacement of
the unrestricted pair that is slightly higher than that of the re-
stricted pair. Also as Φ̄∗ increases, the optimal turning angle α

approaches π from below (shown in Fig. 12 in Appendix C),
which means the optimal physical trajectory gets closer and
closer to a straight line with larger energy budgets.

C. Smooth parametric strokes

Fig. 3 shows that the optimal parametric strokes outper-
form the tilted-rectangle strokes for all values of Φ̄∗, and also
asymptote to the efficiency value of a steadily counter-rotating
cylinder pair. To understand why the TR strokes are subopti-
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θ 1
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FIG. 5. Comparison between the optimal case with unrestricted α

(solid line) and the optimal case with α = π (dashed line) for the
TR strokes for the same nondimensional average mechanical power
Φ̄∗ = Φ̄/

(
µa2/T 2)= 104. The red and blue dots in the phase space

(left column) show the start and end points of the phase diagrams.
The red and blue dots in the physical space (right column) show the
end points of physical trajectories, for the case with α = π and the
case with unrestricted α , respectively. All lengths are scaled with
cylinder radius a.

mal, we compare the physical trajectories and phase diagrams
of the TR strokes and the general optimization results at dif-
ferent values of Φ̄∗ in Fig. 6. The cylinder pair with optimized
smooth strokes travels farther because the center of mass is al-
ways translating and rotating at the same time. To perform a
full rotation by π for a given energy budget, our results show
that it is more efficient to perform a gait that retains some
forward motion, corresponding to a curved phase-space tra-
jectory, than a stationary in-place rotation, corresponding to
a straight line in phase-space. At larger values of Φ̄∗, the ef-
ficiency is more and more dominated by the counter-rotating
part of the gait, and so the distinction between the optimal
smooth and optimal tilted rectangle gaits disappears as both
asymptote towards the efficiency of the counter-rotating cylin-
der pair.

V. COUNTER-ROTATION OF 3D CYLINDER WITH
SPHERICAL END CAPS

The 2D optimization above shows that the counter-rotating
cylinder pair is a simple system with rich complexity in pos-
sible gaits. Though the systematic extension of these findings
to 3D is beyond the scope of this work, we take a first step
to compare the performance of our system to that of other 3D
solutions. As mentioned above, in the context of a 3D exten-
sion the cylinders can be thought of as the cross-section of
a surface-threading torus11,18, or as a pair of counter-rotating
3D cylinders. We choose to focus on the latter option since it
is does not require surface deformations, and is thus arguably
the simpler option to consider in an engineering setting.

Our two-dimensional results demonstrate that the efficiency
for the periodic gaits is bound from above by the efficiency of
a steadily counter-rotating cylinder pair. We therefore focus
on finding the corresponding upper bound for efficiency in
3D. Our geometry consists of a cylinder with radius a and
length 2(AR− 1)a, where AR is the aspect ratio. The ends

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
22

68
1



7

−8 −4 0 4 8

θ2

−8

−4

0

4

8

θ 1

Φ̄∗ = 103

−4 −2 0 2 4

x∗

−4

−2

0

2

4

y
∗

Φ̄∗ = 103

−20 −10 0 10 20

θ2

−20

−10

0

10

20

θ 1

Φ̄∗ = 104

−5 −1 3 7 11

x∗

−6

−2

2

6

y
∗

Φ̄∗ = 104

−60 −30 0 30 60

θ2

−60

−30

0

30

60

θ 1

Φ̄∗ = 105

−8 4 16 28 40

x∗

−24

−12

0

12

24

y
∗

Φ̄∗ = 105

FIG. 6. Comparison of physical trajectories and phase diagrams of
the general optimization results using Fourier series (solid lines) and
the TR strokes (dashed lines). The red and blue dots in the phase
space (left column) show the start and end points of the phase dia-
grams. The red and blue dots in the physical space (right column)
show the end points of physical trajectories. The red dots are for the
general optimization results and the blue dots are for the TR strokes.
The average mechanical power is nondimensionalized as before i.e.
Φ̄∗ = Φ̄/

(
µa2/T 2). All lengths are scaled with cylinder radius a.

of the cylinder are sealed with spherical end caps of radius a
(Fig. 7). The cylinders are positioned such that their axes are
parallel to each other at a distance W = 4a apart, and they are
given equal and opposite angular speeds Ω about their own
axes.

To compute the efficiency of these 3D swimmers, we imple-
mented the extension of the method of regularized Stokeslets
in three dimensions Cortez, Fauci, and Medovikov 19 . Fur-
ther, we follow Smith 20 by implementing a constant-force
boundary element method where we integrate the 3D stokeslet
on each computational element using the Gauss-Legendre
quadrature with 12× 12 quadrature points. The rest of the
numerical methodology is analogous to the 2D case explained
above. We consider aspect ratios in the range 2 ≤ AR ≤ 40,
and for each aspect ratio the cylinders are meshed with around
13000 to 14000 triangular elements each. Since the resolution

FIG. 7. Plot of the mesh of the 3D cylinder pair with spherical end
caps. The aspect ratio AR = 3. The axes are scaled such that x∗ =
x/a, y∗ = y/a, z∗ = z/a. The nondimensional separation between the
axes of the cylinders is W ∗ = W/a = 4. For the case shown, each
cylinder has 13528 triangular faces.

is approximately constant across simulations, we fix the regu-
larization parameter to ε = 0.01. An example of the mesh is
in shown in Fig. 7 for AR = 3.

For this 3D system, we can compute efficiency according to
equation (9) since the dragging problem is well-posed. Fig. 8
and Fig. 9 show the efficiency and velocity respectively, as a
function of aspect ratio AR for the counter-rotating cylinder
pair with W ∗ = W/a = 4. The results suggest that the effi-
ciency for a 3D cylinder pair peaks at η ′ ≈ 0.0085 at a finite
aspect ratio of ARopt ≈ 10, and the velocity approaches that
for a 2D counter-rotating cylinder pair as the aspect ratio in-
creases. We verified that using a ‘2D’ measure of efficiency,
analogous to equation (10), the 3D results also approaches the
2D value with increasing AR (details in Appendix E).

Knowing that these efficiency values provide an upper
bound for arbitrary gaits of the 3D cylinder pair, we can put
them into perspective by comparison with other 3D systems.
For 10 ≤ AR ≤ 40, the range of efficiency is 0.0051 ≤ η ′ ≤
0.0085. These are the values corresponding to W ∗=W/a= 4,
and similar to the 2D case, we expect the efficiency to in-
crease inversely with W ∗ as we decrease the separation be-
tween the cylinders. For comparison, the efficiency of typi-
cal biological cells is around 0.011, of a fully optimized Pur-
cell’s 3 link swimmer around 0.01315, and of two counter-
rotating spheres of radius a with a center-to-center separation
W ∗ =W/a = 2.05 is around 0.0211. It is understandable that
the last efficiency value, corresponding to AR = 2 in our no-
tation, is much higher than the efficiency value achieved by
our 3D cylinders since the separation between the spheres is
much smaller. Investigating the combined effect of AR and
W ∗ on efficiency of this system is left for future work, but
based on the 2D and 3D results we expect the counter-rotating
3D cylinder pair to be able to achieve efficiencies beyond the
above reference values.
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FIG. 8. Efficiency η ′ of a counter-rotating 3D cylinder pair with
spherical end caps for a range of aspect ratio AR.
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FIG. 9. The nondimensional velocity U∗ = U/(Ωa) vs the aspect
ratio AR. The dashed lines denote the corresponding velocities for a
3D cylinder pair with spherical end caps counter-rotating with unit
speed, i.e. U∗2D = 1/W ∗ = 0.25.

VI. CONCLUSION

In this work we studied the behavior of a cylinder-pair
model swimming using three types of periodic gaits in a low
Reynolds number environment. The alternating strokes, in-
spired by Purcell’s three link swimmer, result in trajectories
consisting of circular arc segments, and achieve a global max-
imum in efficiency at a finite value of the average mechan-
ical power Φ̄∗. The TR strokes, which alternate co-rotation
and counter-rotation phases, result in trajectories consisting
of two straight line segments, and outperform the alternating
strokes. For increasing values of Φ̄∗, the efficiency of the TR
strokes asymptote towards that of a steadily counter-rotating
cylinder pair. Finally, optimal smooth gaits have been found
numerically for a range of Φ̄∗ values, leading to trajectories

that alternate counter-rotating phases with smooth changes in
orientation. The efficiencies of the smooth gaits outperform
those of TR strokes, and also asymptote to the steady counter-
rotating efficiency limit with increasing Φ̄∗. Lastly, to inves-
tigate a simple extension of this geometry to 3D, we com-
puted the efficiency of a counter-rotating pair of 3D cylinders
with spherical end caps. The results show that the efficiency is
competitive compared with other model systems and the ve-
locity asymptotes to the value for a 2D cylinder pair as the
aspect ratio increases.

Beyond this work, we believe that the simplicity of the 3D
cylinder pair, both in its geometry and actuation, makes it an
attractive model system for both theoretical studies and prac-
tical applications of low Reynolds number applications. Dif-
ferent extensions can be easily examined, such as investigat-
ing unsteady gaits in the inertial regime13, employing three
or more cylinders and analyzing their optimal configuration
in 3D, and broadening to applications beyond locomotion, by
using the flow induced by the counter-rotating cylinders for
sensing and mixing.
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Appendix A: The coefficients A1, A2, B1, B2

For a cylinder pair that is counter-rotating with rotational
velocity Ω, we have exact solutions for the translational speed
vcom = a2Ω

W and power Φ̄ = 8πµa2Ω211,12. In the notation of
this work, we can then extract the following equalities:

A∗1 =
1

2W ∗
, (A1)

2B∗1−B∗2 = 8π, (A2)

where we set the nondimensional angular speed Ω∗ = 1.
To compare, we compute the coefficients A∗1, A∗2, B∗1, B∗2

using the method of regularized Stokeslets described in Sec-
tion I in MATLAB with N = 300 equally spaced discretization
points on each cylinder and regularization parameter ε = π/N.
The results are shown in Fig. 10 and Fig. 11. In the subplot of
A∗1 vs W ∗ in Fig. 10, the numerical values of A∗1 agrees well
with the exact values A∗1 = 1

2W ∗ . This indicates that the nu-
merical method computes the velocity of the center of mass
accurately. In Fig. 11 we notice that the numerical value of
2B1−B2 diverges away from the exact value 8π for small W ∗.
The regions W ∗ < 4 in the subplots of B∗1 and B∗2 are shaded
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to indicate the region where the results are increasingly incor-
rect. This divergence is still seen for higher spatial resolutions
and other choices of regularization length, implying an O(1)
error for scenarios when the counter-rotating cylinders get in-
creasingly close to each other. We attribute this to our use
of a point-wise regularization of the singular Stokeslets, as
opposed to the more accurate boundary-integral formulation
described in Cortez 14 . For our case of interest, however, we
have W ∗ = 4 and our simple numerical method gives an er-
ror of 1.2% in 2B∗1−B∗2, which we deem acceptable for our
analysis.

2 3 4 5 6
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0.08
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0.16

0.20

0.24

A
∗ 1

2 3 4 5 6
W ∗

−0.26

−0.21
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−0.11
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A
∗ 2
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W ∗

9

12

15

18

21

24

B
∗ 1

2 3 4 5 6
W ∗

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

B
∗ 2

FIG. 10. Numerical values of the nondimensional constants A∗1, A∗2,
B∗1, B∗2 for a range of non-dimensional gap sizes W ∗ are shown in
blue lines with markers. For nondimensionalization we have chosen
the cylinder radius a as our length scale and µa2/T 2 as the scale
of power (so A∗1 = A1/a, A∗2 = A2, B∗1 = B1/(µa2),B∗2 = B2/(µa2)).
The spatial resolution used is N = 600 and ε = π/N. The analytic
result of A∗1 is shown in the top left figure in a black dashed line.
The large open squares denote the geometry considered here, where
W ∗ =W/a = 4. The regions W ∗ < 4 are shaded in the two subplots
for B∗1 and B∗2 to indicate that the numerical results are incorrect.

Appendix B: Alternating stroke

For the alternating stroke, the rotational velocities of each
cylinder are defined in equation (16). From this we can com-
pute

θ̇com = A2(θ̇1 + θ̇2) = A2θ̇alt


+1 if 0 < t ≤ 1

4
−1 if 1

4 < t ≤ 3
4

+1 if 3
4 < t ≤ 1

. (B1)

vcom = A1(θ̇1− θ̇2) = A1θ̇alt

{
+1 if 0 < t ≤ 1

2
−1 if 1

2 < t ≤ 1
. (B2)
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FIG. 11. The percentage error in 2B∗1−B∗2 = (2B1−B2)/(µa2) ver-
sus W ∗ = W/a. The analytic value of 2B∗1 −B∗2 is known to be a
constant equal to 8π . For W ∗ = 4, the percentage error in the numer-
ically computed 2B∗1−B∗2 is 1.2068% (denoted by the blue square).

Integrating to find the orientation of the cylinder pair, we find

θcom(t) =
∫ t

0
θ̇com(t̃) dt̃ (B3)

= A2θ̇alt


t if 0 < t ≤ 1

4
1
2 − t if 1

4 < t ≤ 3
4

t−1 if 3
4 < t ≤ 1

. (B4)

Using the instantaneous orientation θcom(t), we can compute
the instantaneous lab-frame velocity as

ucom(t) = [−sin(θcom(t))êx + cos(θcom(t))êy]A1(θ̇1(t)− θ̇2(t)).
(B5)

The displacement of the center of mass during a cycle is

xcom(t = 1) =
∫ 1

0
ucom(t̃)dt̃ =−4A1

A2

[
1− cos

(
1
4

A2θ̇alt

)]
êx,

(B6)

from which we can directly compute the average velocity ū.
This provides the numerator of the efficiency in equation (10).
The denominator was found in the main text as Φ̄ = B1θ̇ 2

alt.
The efficiency is then

ηalt(Φ̄) =
64πµ

Φ̄

(
A1

A2

)2
1− cos

A2

4

√
Φ̄

B1

2

. (B7)

Appendix C: Tilted-Rectangle stroke

For the tilted-rectangle strokes, the optimal angle α be-
tween the length segments defined in Eq. 20 approaches π

from below as the non-dimensional average mechanical power
Φ̄∗ increases, which is shown in Fig. 12.
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FIG. 12. The angle α in Eq. (20) versus the nondimensional average
mechanical power Φ̄∗ = Φ̄/

(
µa2/T 2) for the optimal TR strokes.

The gray dashed line denotes the value α = π .

Appendix D: Convergence of smooth stroke optimization

To determine how many coefficients are required to obtain
a converged result in the optimization of the smooth strokes,
we incrementally increase M and perform an optimization for
each increment. This allows us to compute the corresponding
change in the efficiency, and we consider the result to have
converged when this incremental change in the efficiency is
less than 0.001%

Figure 13 shows the percentage of change in efficiency as
a function of the number of Fourier coefficients used in the
efficiency optimization, for various values of Φ̄∗. We chose a
threshold of 10−3 to determine that the efficiency is unlikely to
change significantly if more coefficients will be added. Once
that threshold is reached for a given Φ̄∗, we terminate the op-
timization.

Appendix E: 3D cylinder pair

We can define an efficiency η2D = 4πµ ū2(2ARa)/φ̄ for the
3D cylinder pair analogous to the 2D case. The values of η2D
versus AR are plotted in Fig. 14, where the dashed line denotes
the efficiency for a counter-rotating 2D cylinder pair for W ∗ =
W/a = 4. It shows that η2D approaches the counter-rotating
efficiency value of the 2D cylinder pair, 1/32 = 0.03125, as
the aspect ratio increases.
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