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1. Optimization history and results

Figure 1 presents the evolution of our optimization process for each of the two cost
functions. The corresponding table shows the values of each of the parameters for both
our optimal solutions, as well as the initial condition. Figure 3 shows forward and lateral
velocities, as well the e�ciency, as a function of time for each optimal solution.

2. E�ect of swimming frequency

We noted in the main text the high Strouhal number corresponding to both our and
Kern & Koumoutsakos (2006) optimal e�cient swimmer's, and attributed this to the
lower Reynolds number used in these computational works compared with the analyses
in Triantafyllou et al. (1993); Taylor et al. (2003), consistent with Gazzola et al. (2014).
However, both in Kern & Koumoutsakos (2006) and in the current work, the swimming
frequency during the optimization is �xed to T = 1. To investigate whether our high
Strouhal number is an artefact of �xing T , we simulated our optimal e�cient swimmer
with swimming periods T = 0.9 and T = 1.1. The results reported in �gure 4 show
that the velocity of the swimmers increase only slightly stronger than linearly with their
frequencies, so that the Strouhal numbers between these three cases only change by about
2% each. The relative changes in steady-state e�ciency are of the same magnitude, so
that at least for this regime the e�ciency is not sensitive to the swimming frequency.
This is consistent with Gazzola et al. (2014), where a scaling law was derived based on
�uid dynamics arguments that for these simulations would predict U ∝ (T )4/3, which
agrees excellently with our results.

3. Methods

3.1. Numerical method

We consider a self-propelling body immersed in a three dimensional viscous �uid governed
by the incompressible Navier-Stokes equations:

∇ · u = 0,
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u, x ∈ Σ \ Ω (3.1)

where Σ is the entire domain and Ω is the volume occupied by the swimmer. The no-
slip boundary condition at the geometry interface ∂Ω, matches the �uid velocity u to
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the local body velocity us. The feedback from the �uid to the body follows Newton's
equations of motion:

msẍs = FH , d(Isθs)/dt = MH , (3.2)

where FH and MH are the hydrodynamic force and torque exerted by the �uid on the
body, characterised by centre of mass xs, angular velocity θs, mass ms and moment of
inertia Is.
The numerical method to discretize and advance equations (3.1) and (3.2) in time

consists of a remeshed vortex method, with a penalization technique Angot et al. (1999)
to account for the no-slip boundary condition and a projection method Coquerelle &
Cottet (2008); Gazzola et al. (2011) to capture the action from the �uid to the body.
The body geometry is represented with a characteristic function χs (χs = 1 inside the
body, χs = 0 outside and molli�ed at the interface) and its motion is de�ned by the
deformation velocity �eld udef. Further details, validation and veri�cation of the method
can be found in Gazzola et al. (2011, 2012); van Rees et al. (2013). In this study, we
discretize the domain with a uniform grid spacing of h = L/256 during the optimisation
and h = L/512 for the diagnostics reported. The molli�cation length of χs is set to
ϵ = 2

√
2h, Lagrangian CFL to LCFL = 0.1, and penalization factor λ = 104 Gazzola

et al. (2011).

3.2. Cost functions

In this work we present two optimal morphokinematic solutions, one for maximum speed
and one for maximum e�ciency, as in van Rees et al. (2013). The former is obtained
by evaluating the average forward velocity U of the swimmer during its sixth swimming
cycle:

fvel = −U = −

∥∥∥∥∥ 1

T

∫ 6T

5T

U(t) dt

∥∥∥∥∥
2

, (3.3)

where the sign is inverted in case the swimmer moves backwards. The most e�cient
solution is found by minimizing the Froude e�ciency over the sixth swimming cycle:

fe� = − Euseful

Einput + Euseful

= − ρVsU
2
/2(

1
T

∫ 6T

5T
Pinput(t) dt

)
+ ρVsU

2
/2

, (3.4)

where ρ = 1 is the swimmer's density, Vs is its volume and Pinput is the total instantaneous
power delivered to the �uid, computed as

Pinput =
d

dt

∫
Σ\Ω

ρ
u2

2
dV + µ

∫
Σ\Ω

(
∇u+ (∇u)T

)
: ∇u dV. (3.5)

For further details on the computation of these metrics, we refer to (Gazzola et al. 2012;
van Rees et al. 2013).
For completeness, we put our e�ciency de�nition in the context of some related ef-

�ciency metrics. Speci�cally, we note that in our optimization algorithm, the e�ciency
associated with each swimmer is used only for ranking candidate solutions, and it is
discarded afterwards. The adaptation of the generation of new candidate solutions is
therefore only based on the ordering of solutions, rather than the numerical value of
the objective function. This means that as long as a di�erent metric respects the same
ranking as ours, it would lead to an identical optimization process and thus the same
optimal solution.
As a consequence, our metric for e�ciency η = Euseful/(Einput + Euseful) would give
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the same optimum as the metric η1 = Euseful/Einput, since η1 = η/(1− η) is a monotonic
function of η as long as 0 < η < 1. Similarly, the metric η1 would give the same optimum
as η2 = (mgV̄ T )/Einput, where V̄ is the average speed over the swimming cycle T , since
we de�ne Euseful = mV̄ 2/2. The e�ciency metric η2 is actually similar to the inverse cost
of transport metric Tucker (1970), used in biological contexts to compare the energetic
costs of locomotion across di�erent species. Even though in our input energy de�nition
we do not consider physiological e�ects, our e�ciency metric still o�ers an intuitive
interpretation and matches existing approaches in literature.

Alternative metrics for e�ciency could take into account the muscular or physiological
e�ciencies corresponding to biological swimmers. It would be interesting to compare
such optima with our current results. However, this goes beyond scope and purpose of
the current manuscript, and instead will be considered in future investigations.

3.3. Optimizer

Optimal morphokinematic solutions (characterised by {βw
i }i=1,...,4, {βh

j }j=1,...,6, {βm
k }k=1,...,4

and τ) are identi�ed by the stochastic optimisation algorithm Covariance Matrix Adap-
tation Evolutionary Strategy (CMA-ES) in its multi-host, rank-µ and weighted recombi-
nation form Hansen et al. (2003). CMA-ES has been shown to be robust and e�cient in
dealing with �ow related optimisation problems Kern & Koumoutsakos (2006); Gazzola
et al. (2012); van Rees et al. (2013). Throughout this work we set the population size
p = 60, which we found to be a good compromise between robustness and computational
cost. We initialise our parameters (m0) to reproduce the geometry of a zebra�sh larva
at 5 days post fertilisation (Fig. 2) without any midline deformations.

The search space bounds are enforced through a rejection algorithm. We consider
invalid, for numerical reasons, cases in which the vertical coordinate of βw

1 , β
w
Nw−2, β

h
1

or βh
Nh−2 is smaller than the grid spacing used in our simulations. Furthermore, we

reject cases in which one or both pro�le curves cross the body midline or intercross
themselves throughout the deformation. Invalid con�gurations are rejected by assigning
a high default cost function value.

3.4. Choice of number of parameters

We use �fteen parameters to represent the swimmer's morphokinematics, using �ve for
the gait (four control point curvatures and one controlling the wavelength), six for the
height pro�le and four for the width pro�le. A larger number of parameters, although
likely to improve the representation of �ne morphological features and kinematic details,
comes at a high computational price. In fact, evolutionary strategies su�er from a curse
of dimensionality, so that any increase in the number of optimisation parameters has to
be traded o� against the corresponding computational cost.

For the midline, the �ve controlling parameters were found to be able to reproduce a
satisfactory range of undulatory swimming gaits in Kern & Koumoutsakos (2006) and in
Gazzola et al. (2012). For the swimmer's morphology, the parameterization and number
of parameters are the same as in van Rees et al. (2013). This parameterization was found
capable of reproducing a wide range of morphological shapes. The use of six parame-
ters for the height pro�le allows more complexity for such features as caudal �n and/or
dorsal �ns. We use only four parameters for the width curve since the representation
and functionality of lateral �ns is not considered in our computational setup and simu-
lation method. Four parameters for the width pro�le were found to be su�cient for the
representation of a variety of streamlined pro�les.



4 W. M. van Rees, M. Gazzola and P. Koumoutsakos

0 20 40 60 80 100 120 140
Generation

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

-E
ff
ic
ie
n
cy

0 10 20 30 40 50 60 70
Generation

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

-S
p
e
e
d

Figure 1. The �tness evolution for the e�cient (left) and fast (right) swimmer during the
optimization. We show the mean per generation (black), the minimum per generation (blue) and
the global minimum (green). The y-axes are normalized by their respective optimum values.
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βm
1 βm

2 βm
3 βm

4 τ

m0 0 0 0 0 π
me� −2.9 2.0 −6.1 −2.5 2.4
mfast 2.5 −7.7 −2.2 −2.0 0.76

βw
1 βw

2 βw
3 βw

4

m0 8.9e−2 1.7e−2 1.6e−2 1.3e−2

me� 2.4e−1 3.0e−1 8.3e−3 5.7e−3

mfast 1.4e−1 8.1e−2 5.0e−3 7.5e−3

βh
1 βh

2 βh
3 βh

4 βh
5 βh

6

m0 5.5e−2 6.8e−2 7.6e−2 6.4e−2 7.2e−3 1.1e−1

me� 2.2e−1 2.7e−1 2.8e−1 3.0e−1 3.0e−1 2.2e−1

mfast 6.0e−2 4.5e−2 8.5e−2 9.8e−2 9.5e−2 1.3e−1

Table 1. The optimal solutions' motion (top left), width (top right) and height (bottom)
parameters for fast (mfast) and e�cient (me�) swimming, as well as for start searching point
m0. The parameters correspond to swimmers with L = 1.
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Figure 2. Width (top left) and height (bottom left) pro�le curves, and 3D shape (right) for
the larval zebra�sh morphology, and starting searching point m0.
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Figure 3. The evolution of forward and lateral velocities (left) and e�ciency in the last cycle
(right) for the fast (blue) and e�cient (red) swimmer. The �nal values are given by the respective
numbers above the dashed lines. The numerical data corresponds to swimmers with L = 1, T = 1
and Re�sh = 550.
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Figure 4. Forward and lateral velocities (left) and e�ciency over last cycle (right) of the most
e�cient morphokinematic solution swimming with T = 0.9 (green), T = 1.0 (blue) and T = 1.1
(red). The numerical data corresponds to swimmers with L = 1, and Re�sh = 550.


