# Supplementary Information for "Growth patterns for shape-shifting elastic bilayers"

## Contents

| $\mathbf{S1}$ | Geo  | metry and elasticity                                                  | <b>2</b> |
|---------------|------|-----------------------------------------------------------------------|----------|
|               | S1.1 | Elastic energy of a curved monolayer                                  | 3        |
|               |      | S1.1.1 Energy derivation                                              | 4        |
|               |      | S1.1.2 Föppl-Von Karman energy for elastic plates                     | 5        |
|               | S1.2 | Elastic energy of a bilayer                                           | 7        |
|               | S1.3 | Energy equivalence between mono- and bilayers                         | 8        |
|               |      | S1.3.1 Equal layer thicknesses                                        | 8        |
|               |      | S1.3.2 Unequal layer thicknesses                                      | 1        |
|               |      | S1.3.3 Unequal layer thicknesses and Young's moduli 1                 | 4        |
| $\mathbf{S2}$ | Forv | ward problem of growth 1                                              | 6        |
|               | S2.1 | Compatibility relations                                               | 6        |
|               | S2.2 | Specialization for isotropically growing bilaver : spherical surfaces | 7        |
|               | S2.3 | Specialization for orthogonally growing bilayer : saddle surfaces     | 8        |
|               | S2.4 | Specialization for parallel growing bilayer : 'bimetallic strip'      | 9        |
| $\mathbf{S3}$ | Inve | erse problem of growth 2                                              | 0        |
|               | S3.1 | Constraint on target surface curvature                                | 0        |
|               | S3.2 | Trajectory of growth                                                  | 1        |
| $\mathbf{S4}$ | Res  | ults 2                                                                | 1        |
|               | S4.1 | Examples for archetypal geometries                                    | 2        |
|               |      | S4.1.1 Hemisphere 2                                                   | 3        |
|               |      | S4.1.2 Catenoid                                                       | 3        |
|               |      | S4.1.3 Hyperbolic paraboloid                                          | 4        |
|               | S4.2 | Numerical method                                                      | 4        |
|               | S4.3 | Snapdragon flower                                                     | 5        |
|               | S4.4 | Max Planck's face                                                     | 7        |
|               | S4.5 | Horseshoe bend                                                        | 8        |

## S1 Geometry and elasticity

This section accompanies the 'Geometry and elasticity' section of the main text. Starting with the geometric setting of the problem, we will derive in detail the the monolayer energy, the bilayer energy, and the equivalence between the two for equal and unequal layer thicknesses and Young's moduli.

We parameterize the midsurface of a shell using curvilinear coordinates (x, y) in a domain U of the plane, and define its embedding in space by a map  $\vec{m} : U \to \mathbb{R}^3$ . Each point  $\vec{m}(x, y)$  on the midsurface is characterized by its tangent vectors  $\partial \vec{m} / \partial x$  and  $\partial \vec{m} / \partial y$ , and a normal unit vector  $\vec{n} = (\partial \vec{m} / \partial x \times \partial \vec{m} / \partial y) / \|\partial \vec{m} / \partial x \times \partial \vec{m} / \partial y\|$ , as shown in figure 1 of the main text. Using the Kirchhoff-Love assumption, we can extend  $\vec{m}$  to an immersion  $\vec{s}$  of  $U \times [-h/2, h/2]$ , where h is the thickness of the shell. This extension dictates that any material point inside the volume of the shell can be written as a normal offset from the midsurface:

$$\vec{s}(x, y, z) = \vec{m}(x, y) + z\vec{n}(x, y),$$

where  $z \in [-h/2, h/2]$ , and the normal field  $\vec{n}$  is defined by

$$\vec{n} = \left(\partial \vec{m} / \partial x \times \partial \vec{m} / \partial y\right) / \|\partial \vec{m} / \partial x \times \partial \vec{m} / \partial y\|_{1}$$

This map gives rise to a metric **G** on the volume  $U \times [-h/2, h/2]$ 

$$\begin{aligned} \mathbf{G}(x,y,z) &= (\mathrm{d}\vec{s})^T \, \mathrm{d}\vec{s} \\ &= \begin{pmatrix} \mathrm{d}\vec{m} + z \mathrm{d}\vec{n})^T (\mathrm{d}\vec{m} + z \mathrm{d}\vec{n}) & 0 \\ 0 & \vec{n}^T \vec{n} \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{g}_c(x,y,z) & 0 \\ 0 & 1 \end{pmatrix}, \end{aligned}$$

where d denotes the differential operator<sup>1</sup>. The 2 × 2 tensor  $\mathbf{g}_c$  can be understood as a metric on offset surfaces from the mid-surface. In other words, when extruding a distance z in normal direction from the point (x, y) on the mid-surface, we arrive at an offset surface with metric  $\mathbf{g}_c(x, y, z)$ . We can expand  $\mathbf{g}_c$  as follows

$$\begin{aligned} \mathbf{g}_{c}(x, y, z) &= (\mathrm{d}\vec{m} + z\mathrm{d}\vec{n})^{T}(\mathrm{d}\vec{m} + z\mathrm{d}\vec{n}) \\ &= (\mathrm{d}\vec{m})^{T}\,\mathrm{d}\vec{m} + z((\mathrm{d}\vec{m})^{T}\,\mathrm{d}\vec{n} + (\mathrm{d}\vec{n})^{T}\,\mathrm{d}\vec{m}) + z^{2}\,(\mathrm{d}\vec{n})^{T}\,\mathrm{d}\vec{n} \\ &= \mathbf{a}_{c}(x, y) - 2z\mathbf{b}_{c}(x, y) + z^{2}\mathbf{c}_{c}(x, y) \end{aligned}$$

where  $\mathbf{a}_c = (\mathbf{d}\vec{m})^T \mathbf{d}\vec{m}$ ,  $\mathbf{b}_c = -\frac{1}{2}((\mathbf{d}\vec{m})^T \mathbf{d}\vec{n} + (\mathbf{d}\vec{n})^T \mathbf{d}\vec{m})$ , and  $\mathbf{c}_c = (\mathbf{d}\vec{n})^T \mathbf{d}\vec{n}$ , are the first, second and third fundamental forms of the midsurface in the current configuration. It is a standard result that  $(\mathbf{d}\vec{m})^T \mathbf{d}\vec{n}$  is symmetric, so that

$$\mathbf{b}_{c} = -\left(\mathrm{d}\vec{m}\right)^{T}\mathrm{d}\vec{n} = -\left(\mathrm{d}\vec{n}\right)^{T}\mathrm{d}\vec{m} = \begin{bmatrix} \vec{m}_{xx} \cdot \vec{n} & \vec{m}_{xy} \cdot \vec{n} \\ \vec{m}_{xy} \cdot \vec{n} & \vec{m}_{yy} \cdot \vec{n} \end{bmatrix}$$

Similar to the current configuration, we can define a rest (unstrained) metric  $\mathbf{g}_r$  to each location in the shell, which can be written as

$$\mathbf{g}_r(x, y, z) = \mathbf{a}_r(x, y) - 2z\mathbf{b}_r(x, y) + z^2\mathbf{c}_r.$$

<sup>&</sup>lt;sup>1</sup>We use the lower-case d as differential operator, so that if a function  $f : \mathbb{R}^n \to \mathbb{R}^m$ , the differential df is a  $m \times n$  matrix where the *i*th column consists of  $(\partial f/\partial x_i)$ .

As noted in [1], this metric does not need to correspond to any embedding  $\vec{m}_r$  of a midsurface in  $\mathbb{R}^3$ , but can rather be abstract (for instance, originating from growth on top of an initially planar structure).

The local, directional Green strain given a point p and vector  $\vec{w}$  parallel to the xy plane (by the Kirchhoff-Love assumptions we ignore strain in the thickness direction) is given by

$$\epsilon(p, \vec{w}) = \frac{1}{2} \frac{\vec{w}^T \mathbf{g}_c(p) \vec{w} - \vec{w}^T \mathbf{g}_r \vec{w}}{\vec{w}^T \mathbf{g}_r \vec{w}},$$

and uniformity and isotropy of the shell material implies that the shell energy must be a symmetric function of the eigenvalues of

$$\boldsymbol{\epsilon} = \frac{1}{2} \mathbf{g}_r^{-1} (\mathbf{g}_c - \mathbf{g}_r). \tag{S1.1}$$

Since the elastic energy E is required to be zero and at a local minimum when both eigenvalues are 0, E cannot have any constant term or linear terms in the eigenvalues. A St. Venant-Kirchhoff material model assumes there are no terms higher than quadratic, which leads to an expression for the total energy of the shell,

$$E = \frac{1}{2} \int_{U} \int_{-h/2}^{h/2} \left( \alpha \operatorname{Tr}^{2}(\boldsymbol{\epsilon}) + 2\beta \operatorname{Tr}(\boldsymbol{\epsilon}^{2}) \right) \sqrt{\det \mathbf{g}_{r}} \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y,$$

where  $\alpha$  and  $\beta$  are plane-stress Lamé parameters, which can be written in terms of the Young's modulus Y and the Poisson's ratio  $\nu$ 

$$\alpha = \frac{Y\nu}{1-\nu^2}, \qquad \beta = \frac{Y}{2(1+\nu)}.$$

We define the elastic energy norm as [2]

$$\|\mathbf{A}\|_{e}^{2} = \alpha \operatorname{Tr}^{2}(\mathbf{A}) + 2\beta \operatorname{Tr}(\mathbf{A}^{2}), \qquad (S1.2)$$

so the total energy of the shell can be written simply as

$$E = \frac{1}{2} \int_{U} \int_{-h/2}^{h/2} \|\boldsymbol{\epsilon}\|_{e}^{2} \sqrt{\det \mathbf{g}_{r}} \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y.$$
(S1.3)

#### S1.1 Elastic energy of a curved monolayer

In this section we will derive the final form of the energy for a thin elastic monolayer, following roughly the derivation of [2]. To simplify notation, we define an elastic energy inner product

$$\langle \mathbf{A}, \mathbf{B} \rangle_e = \alpha \operatorname{Tr}(\mathbf{A}) \operatorname{Tr}(\mathbf{B}) + 2\beta \operatorname{Tr}(\mathbf{AB}),$$

which obeys the following identities

$$\begin{split} \langle \mathbf{A}, \, \mathbf{A} \rangle_e &= \|\mathbf{A}\|_e^2 \\ \langle \lambda \mathbf{A}, \, \mathbf{B} \rangle_e &= \langle \mathbf{A}, \, \lambda \mathbf{B} \rangle_e = \lambda \left\langle \mathbf{A}, \, \mathbf{B} \right\rangle_e \\ \langle \mathbf{A}, \, \mathbf{B} \rangle_e &= \langle \mathbf{B}, \, \mathbf{A} \rangle_e \\ \langle \mathbf{A} + \mathbf{B}, \, \mathbf{C} \rangle_e &= \langle \mathbf{A}, \, \mathbf{C} \rangle_e + \langle \mathbf{B}, \, \mathbf{C} \rangle_e \end{split}$$

#### S1.1.1 Energy derivation

We can expand  $\mathbf{g}_r^{-1}$  as follows:

$$\mathbf{g}_{r}^{-1} = (\mathbf{a}_{r} - 2z\mathbf{b}_{r} + z^{2}\mathbf{c}_{r})^{-1}$$
  
=  $\mathbf{a}_{r}^{-1} + 2z\mathbf{a}_{r}^{-1}\mathbf{b}_{r}\mathbf{a}_{r}^{-1} + z^{2}\left(-\mathbf{a}_{r}^{-1}\mathbf{c}_{r}\mathbf{a}_{r}^{-1} + 4\mathbf{a}_{r}^{-1}\mathbf{b}_{r}\mathbf{a}_{r}^{-1}\mathbf{b}_{r}\mathbf{a}_{r}^{-1}\right) + \mathcal{O}(z^{3}).$ 

We can therefore write for the strain:

$$\begin{aligned} 2\boldsymbol{\epsilon} &= \mathbf{g}_{r}^{-1} \left( \mathbf{g}_{c} - \mathbf{g}_{r} \right) = \mathbf{g}_{r}^{-1} \mathbf{g}_{c} - \mathbf{I} \\ &= \left[ \mathbf{a}_{r}^{-1} + 2z\mathbf{a}_{r}^{-1}\mathbf{b}_{r}\mathbf{a}_{r}^{-1} + z^{2} \left( -\mathbf{a}_{r}^{-1}\mathbf{c}_{r}\mathbf{a}_{r}^{-1} + 4\mathbf{a}_{r}^{-1}\mathbf{b}_{r}\mathbf{a}_{r}^{-1}\mathbf{b}_{r}\mathbf{a}_{r}^{-1} \right) + \mathcal{O}(z^{3}) \right] \left[ \mathbf{a}_{c} - 2z\mathbf{b}_{c} + z^{2}\mathbf{c}_{c} \right] - \mathbf{I} \\ &= \left( \mathbf{a}_{r}^{-1}\mathbf{a}_{c} - \mathbf{I} \right) - \left( 2\mathbf{a}_{r}^{-1} \left[ \mathbf{b}_{c} - \mathbf{b}_{r}\mathbf{a}_{r}^{-1}\mathbf{a}_{c} \right] \right) z + \left[ 4\mathbf{a}_{r}^{-1}\mathbf{b}_{r}\mathbf{a}_{r}^{-1} \left( \mathbf{b}_{r}\mathbf{a}_{r}^{-1}\mathbf{a}_{c} - \mathbf{b}_{c} \right) + \mathbf{a}_{r}^{-1} \left( \mathbf{c}_{c} - \mathbf{c}_{r}\mathbf{a}_{r}^{-1}\mathbf{a}_{c} \right) \right] z^{2} + \mathcal{O}(z^{3}) \end{aligned}$$

Now we neglect the terms of order  $\mathcal{O}(z^2)$  and higher. For the first order term, we further assume that  $\|\mathbf{a}_r^{-1}\mathbf{a}_c - \mathbf{I}\|_{\infty} \leq h$  so that

$$z\mathbf{a}_r^{-1}[\mathbf{b}_c - \mathbf{b}_r\mathbf{a}_r^{-1}\mathbf{a}_c] \approx z\mathbf{a}_r^{-1}(\mathbf{b}_c - \mathbf{b}_r) + \mathcal{O}(h)$$

We then get

$$\boldsymbol{\epsilon} = \frac{1}{2} (\mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}) - z \mathbf{a}_r^{-1} (\mathbf{b}_c - \mathbf{b}_r) + \mathcal{O}(z^2)$$

We can now compute  $\|\boldsymbol{\epsilon}\|_{e}^{2}$ :

$$\begin{aligned} \|\boldsymbol{\epsilon}\|_{e}^{2} &= \langle \boldsymbol{\epsilon}, \, \boldsymbol{\epsilon} \rangle_{e} \\ &= \left\langle \frac{1}{2} (\mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I}) - z \mathbf{a}_{r}^{-1} (\mathbf{b}_{c} - \mathbf{b}_{r}), \, \frac{1}{2} (\mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I}) - z \mathbf{a}_{r}^{-1} (\mathbf{b}_{c} - \mathbf{b}_{r}) \right\rangle_{e} \\ &= \frac{1}{4} \left\| \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} + z^{2} \left\| \mathbf{a}_{r}^{-1} (\mathbf{b}_{c} - \mathbf{b}_{r}) \right\|_{e}^{2} - z \left\langle (\mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I}), \, \mathbf{a}_{r}^{-1} (\mathbf{b}_{c} - \mathbf{b}_{r}) \right\rangle_{e} \end{aligned}$$

The area factor can be expanded as

$$\sqrt{\det \mathbf{g}_r} = \sqrt{\det \mathbf{a}_r} \left( 1 - \operatorname{Tr}(\mathbf{a}_r^{-1}\mathbf{b}_r)z + \left(\frac{1}{2}\operatorname{Tr}(\mathbf{a}_r^{-1}\mathbf{c}_r) + \frac{1}{2}\operatorname{Tr}^2(\mathbf{a}_r^{-1}\mathbf{b}_r) - \operatorname{Tr}\left[\left(\mathbf{a}_r^{-1}\mathbf{b}_r\right)^2\right]\right) z^2 + O(z^3) \right).$$

Plugging these results into equation (S1.3) and integrating over z, gives the final expression for the monolayer energy

$$E_{\mathrm{ML}} = \frac{1}{2} \int_{U} \int_{-h/2}^{h/2} \|\boldsymbol{\epsilon}\|_{e}^{2} \sqrt{\det \mathbf{g}_{r}} \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y$$
  
$$= \frac{1}{2} \int_{U} \left[ \frac{h}{4} \left\| \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} + \frac{h^{3}}{12} \left\| \mathbf{a}_{r}^{-1} (\mathbf{b}_{c} - \mathbf{b}_{r}) \right\|_{e}^{2} \right] \sqrt{\det \mathbf{a}_{r}} \, \mathrm{d}x \, \mathrm{d}y + \mathcal{O}(h^{4})$$
  
$$= \frac{1}{2} \int_{U} \mathcal{E}_{\mathrm{ML}} \sqrt{\det \mathbf{a}_{r}} \, \mathrm{d}x \, \mathrm{d}y + \mathcal{O}(h^{4}),$$

where we have defined the energy density

$$\mathcal{E}_{\rm ML} = \frac{h}{4} \left\| \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 + \frac{h^3}{12} \left\| \mathbf{a}_r^{-1} (\mathbf{b}_c - \mathbf{b}_r) \right\|_e^2.$$

#### S1.1.2 Föppl-Von Karman energy for elastic plates

To put the energy formulation used in this work into context, here we derive from it the more familiar Föppl-Von Karman energy for the case of a deformed elastic plate.

To define a point on the plate, we use the Cartesian coordinate system on the plane (x, y) to express the midsurface, and define the rest configuration by

$$\vec{m}_r(x,y) = (x,y,0) \,.$$

We deform the rest configuration according to a displacement field (u, v, w), leading to the following deformed configuration

$$\vec{m}_c(x,y) = (x + u(x,y), y + v(x,y), w(x,y))$$

For this case, discarding all terms of higher order than quadratic in the deflection, we can write down the Föppl-Von Karman energy as [3, p. 201]

$$E_{\rm FvK} = \frac{Eh}{2(1-\nu^2)} \iint \left[ \left(\varepsilon_{11} + \varepsilon_{22}\right)^2 - 2(1-\nu) \left(\varepsilon_{11}\varepsilon_{22} - \varepsilon_{12}^2\right) \right] \, \mathrm{d}x \, \mathrm{d}y \\ + \frac{Eh^3}{24(1-\nu^2)} \iint \left[ \left( \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right)^2 - 2(1-\nu) \left( \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} - \left( \frac{\partial^2 w}{\partial x \partial y} \right)^2 \right) \right] \, \mathrm{d}x \, \mathrm{d}y$$

where

$$\begin{split} \varepsilon_{11} &= \frac{\partial u}{\partial x} + \frac{1}{2} \left( \frac{\partial w}{\partial x} \right)^2 \\ \varepsilon_{12} &= \frac{1}{2} \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + \frac{1}{2} \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \\ \varepsilon_{22} &= \frac{\partial v}{\partial y} + \frac{1}{2} \left( \frac{\partial w}{\partial y} \right)^2. \end{split}$$

Here we start with our energy formulation

$$E_{\rm ML} = \frac{1}{2} \int_U \left[ \frac{h}{4} \left\| \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 + \frac{h^3}{12} \left\| \mathbf{a}_r^{-1} (\mathbf{b}_c - \mathbf{b}_r) \right\|_e^2 \right] \sqrt{\det \mathbf{a}_r} \, \mathrm{d}x \, \mathrm{d}y,$$

and note immediately that for this particular rest configuration we can compute  $\mathbf{a}_r = \mathbf{I}$  and  $\mathbf{b}_r = 0$ .

For the deformed configuration, we find the coefficients of the first fundamental form  $\mathbf{a}_c$  as

$$\begin{aligned} (\mathbf{a}_{c})_{11} &= \frac{\partial \vec{m}_{c}}{\partial x} \cdot \frac{\partial \vec{m}_{c}}{\partial x} = \left(1 + \frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial v}{\partial x}\right)^{2} + \left(\frac{\partial w}{\partial x}\right)^{2} \\ (\mathbf{a}_{c})_{12} &= \frac{\partial \vec{m}_{c}}{\partial x} \cdot \frac{\partial \vec{m}_{c}}{\partial y} = \left(1 + \frac{\partial u}{\partial x}\right) \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \left(1 + \frac{\partial v}{\partial y}\right) + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \\ (\mathbf{a}_{c})_{22} &= \frac{\partial \vec{m}_{c}}{\partial y} \cdot \frac{\partial \vec{m}_{c}}{\partial y} = \left(\frac{\partial u}{\partial y}\right)^{2} + \left(1 + \frac{\partial v}{\partial y}\right)^{2} + \left(\frac{\partial w}{\partial y}\right)^{2}, \end{aligned}$$

Applying the assumptions of the Föppl-Von Karman approach, we can simplify this to

$$(\mathbf{a}_{c})_{11} = 1 + 2\frac{\partial u}{\partial x} + \left(\frac{\partial w}{\partial x}\right)^{2} = 1 + 2\varepsilon_{11}$$
$$(\mathbf{a}_{c})_{12} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial x}\frac{\partial w}{\partial y} = 2\varepsilon_{12}$$
$$(\mathbf{a}_{c})_{22} = 1 + 2\frac{\partial v}{\partial y} + \left(\frac{\partial w}{\partial y}\right)^{2} = 1 + 2\varepsilon_{22}.$$

We can use the immersion  $\vec{m_c}$  to define the normal vector field as

$$\vec{n}(x,y) = \left(\frac{\partial \vec{m}_c}{\partial x} \times \frac{\partial \vec{m}_c}{\partial y}\right) / \left\|\frac{\partial \vec{m}_c}{\partial x} \times \frac{\partial \vec{m}_c}{\partial y}\right\|$$

For the second fundamental form coefficients, the energy density is multiplied by  $\mathcal{O}(h^3)$ , and so we the highest order terms:

$$\begin{aligned} (\mathbf{b}_c)_{11} &= -\frac{\partial^2 \vec{m}_c}{\partial x^2} \cdot \vec{n} = -\frac{\partial^2 w}{\partial x^2} \\ (\mathbf{b}_c)_{12} &= -\frac{\partial^2 \vec{m}_c}{\partial x \partial y} \cdot \vec{n} = -\frac{\partial^2 w}{\partial x \partial y} \\ (\mathbf{b}_c)_{22} &= -\frac{\partial^2 \vec{m}_c}{\partial y^2} \cdot \vec{n} = -\frac{\partial^2 w}{\partial y^2} \end{aligned}$$

Now we can compute the stretching and bending contributions according to the given energy formulation. For the stretching contribution we have

$$\begin{aligned} \left\| \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} &= \left\| \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} = \left\| 2 \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} \\ \varepsilon_{12} & \varepsilon_{22} \end{pmatrix} \right\|_{e}^{2} \\ &= 4 \left[ \frac{E\nu}{1 - \nu^{2}} \left( \varepsilon_{11} + \varepsilon_{22} \right)^{2} + \frac{E}{1 + \nu} \left( \varepsilon_{11}^{2} + 2\varepsilon_{12}^{2} + \varepsilon_{22}^{2} \right) \right] \\ &= \frac{4E}{1 - \nu^{2}} \left[ \left( \varepsilon_{11} + \varepsilon_{22} \right)^{2} - 2(1 - \nu) \left( \varepsilon_{11}\varepsilon_{22} - \varepsilon_{12}^{2} \right) \right] \end{aligned}$$

For the bending contribution, we obtain

$$\begin{split} \left\|\mathbf{a}_{r}^{-1}\mathbf{b}_{c}\right\|_{e}^{2} &= \left\|\mathbf{b}_{c}\right\|_{e}^{2} = \left\|-\left(\frac{\partial^{2}w/\partial x^{2}}{\partial^{2}w/(\partial x\partial y)} \frac{\partial^{2}w/(\partial x\partial y)}{\partial^{2}w/\partial y^{2}}\right)\right\|_{e}^{2} \\ &= \frac{E\nu}{1-\nu^{2}}\left(\frac{\partial^{2}w}{\partial x^{2}} + \frac{\partial^{2}w}{\partial y^{2}}\right)^{2} + \frac{E}{1+\nu}\left(\left(\frac{\partial^{2}w}{\partial x^{2}}\right)^{2} + 2\left(\frac{\partial^{2}w}{\partial x\partial y}\right)^{2} + \left(\frac{\partial^{2}w}{\partial y^{2}}\right)^{2}\right) \\ &= \frac{E}{1-\nu^{2}}\left[\left(\frac{\partial^{2}w}{\partial x^{2}} + \frac{\partial^{2}w}{\partial y^{2}}\right)^{2} - 2(1-\nu)\left(\frac{\partial^{2}w}{\partial x^{2}}\frac{\partial^{2}w}{\partial y^{2}} - \left(\frac{\partial^{2}w}{\partial x\partial y}\right)^{2}\right)\right] \end{split}$$

Now we can write down the full energy

$$E_{\rm ML} = \frac{1}{2} \int_{U} \left[ \frac{h}{4} \left\| \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} + \frac{h^{3}}{12} \left\| \mathbf{a}_{r}^{-1} (\mathbf{b}_{c} - \mathbf{b}_{r}) \right\|_{e}^{2} \right] \sqrt{\det \mathbf{a}_{r}} \, \mathrm{d}x \, \mathrm{d}y$$
$$= \frac{Eh}{2(1 - \nu^{2})} \int_{U} \left[ (\varepsilon_{11} + \varepsilon_{22})^{2} - 2(1 - \nu) \left( \varepsilon_{11} \varepsilon_{22} - \varepsilon_{12}^{2} \right) \right] \, \mathrm{d}x \, \mathrm{d}y$$
$$+ \frac{Eh^{3}}{24(1 - \nu^{2})} \int_{U} \left[ \left( \frac{\partial^{2}w}{\partial x^{2}} + \frac{\partial^{2}w}{\partial y^{2}} \right)^{2} - 2(1 - \nu) \left( \frac{\partial^{2}w}{\partial x^{2}} \frac{\partial^{2}w}{\partial y^{2}} - \left( \frac{\partial^{2}w}{\partial x \partial y} \right)^{2} \right) \right] \, \mathrm{d}x \, \mathrm{d}y,$$

which is identical to the FvK energy.

In case we grow the plate, our strain field gets corrected through a multiplicative decomposition of the strain tensor. Applying orthotropic growth to the initial reference metric  $\mathbf{I}$ , we assume every material line has grown by a factor  $s_1$  along the direction given by an angle  $\theta$  with respect to the x coordinate, and by a factor  $s_2$  in the orthogonal direction. We can then write the final, grown metric  $\mathbf{a}_r$  through its spectral decomposition as

$$\begin{aligned} \mathbf{a}_r &= \mathbf{R}^T \mathbf{\Lambda} \mathbf{R} \equiv \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}^T \begin{pmatrix} (1+s_1)^2 & 0 \\ 0 & (1+s_2)^2 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \\ &\approx \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}^T \begin{pmatrix} 1+2s_1 & 0 \\ 0 & 1+2s_2 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \\ &= \mathbf{I} + 2\mathbf{R}^T \begin{pmatrix} s_1 & 0 \\ 0 & s_2 \end{pmatrix} \mathbf{R} \\ &\equiv \mathbf{I} + 2\boldsymbol{\varepsilon}_g, \end{aligned}$$

where the second step follows from a linearization for small growth factors, and in the last step we introduced the definition of the growth strain  $\varepsilon_q$ .

Taking the inverse, we can write

$$\mathbf{a}_r^{-1} = \left(\mathbf{I} + 2\boldsymbol{\varepsilon}_g\right)^{-1} \approx \mathbf{I} - 2\boldsymbol{\varepsilon}_g$$

where we used  $\|\boldsymbol{\varepsilon}_g\| < 1$ . The stretching contribution to the energy then becomes

$$\begin{split} \left\| \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} &\approx \left\| (\mathbf{I} - 2\boldsymbol{\varepsilon}_{g}) \, \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} \\ &= \left\| (\mathbf{I} - 2\boldsymbol{\varepsilon}_{g}) \left( 2\boldsymbol{\varepsilon} + \mathbf{I} \right) - \mathbf{I} \right\|_{e}^{2} \\ &\approx \left\| 2(\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{g}) \right\|_{e}^{2} \end{split}$$

where the last step follows if both the strains, and the relative growth factors are small. Furthermore, the correction from the  $\mathbf{a}_r^{-1}$  term in the bending strain can be neglected using the same reasoning. This shows how the multiplicative decomposition for growth simplifies to an additive strain contribution after linearization, as exploited by, for instance, [4]. A substantially more in-depth treatment of these different approaches is presented in [5, 6].

#### S1.2 Elastic energy of a bilayer

The bilayer is formed by two layers of constant thickness h/2 each, which share the same midsurface located at z = 0. The top layer is the part of the bilayer for which z > 0, so that the midsurface normals point into this layer, and the bottom layer is at z < 0. Each layer is prescribed its own, independent metric that is constant throughout its respective thickness, denoted as  $\mathbf{g}_{r1} = \mathbf{a}_{r1}$  for the bottom, and  $\mathbf{g}_{r2} = \mathbf{a}_{r2}$  for the top layer. Any immersion of the bilayer in  $\mathbb{R}^3$  can be described by the immersion of the midsurface, defined by  $\vec{m}$ , and giving rise to a first fundamental form  $\mathbf{a}_c$ , and a second fundamental form  $\mathbf{b}_c$ , similar to the monolayer.

To derive the elastic energy of the bilayer, we start from equation (S1.3) and specialize it for the bilayer case by splitting the integral over the thickness into two components, one corresponding to each layer:

$$E_{\rm BL} = \frac{1}{2} \int_{U} \int_{-h/2}^{0} \|\boldsymbol{\epsilon}_1\|_e^2 \sqrt{\det \mathbf{a}_{r1}} \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y + \frac{1}{2} \int_{U} \int_{0}^{h/2} \|\boldsymbol{\epsilon}_2\|_e^2 \sqrt{\det \mathbf{a}_{r2}} \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y \tag{S1.4}$$

$$= \frac{1}{2} \int_{U} \int_{-h/2}^{0} \left[ \frac{1}{4} \left\| \mathbf{a}_{r1}^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 + z^2 \left\| \mathbf{a}_{r1}^{-1} \mathbf{b}_c \right\|_e^2 - z \left\langle (\mathbf{a}_{r1}^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_{r1}^{-1} \mathbf{b}_c \right\rangle_e \right] \sqrt{\det \mathbf{a}_{r1}} \, \mathrm{d}x \, \mathrm{d}y$$

$$+ \frac{1}{2} \int_{U} \int_{0}^{h/2} \left[ \frac{1}{4} \left\| \mathbf{a}_{r2}^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 + z^2 \left\| \mathbf{a}_{r2}^{-1} \mathbf{b}_c \right\|_e^2 - z \left\langle (\mathbf{a}_{r2}^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_{r2}^{-1} \mathbf{b}_c \right\rangle_e \right] \sqrt{\det \mathbf{a}_{r2}} \, \mathrm{d}x \, \mathrm{d}y$$

$$= \frac{1}{2} \int_{U} \left[ \frac{h}{8} \left\| \mathbf{a}_{r1}^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 + \frac{h^3}{24} \left\| \mathbf{a}_{r1}^{-1} \mathbf{b}_c \right\|_e^2 + \frac{h^2}{8} \left\langle (\mathbf{a}_{r1}^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_{r1}^{-1} \mathbf{b}_c \right\rangle_e \right] \sqrt{\det \mathbf{a}_{r1}} \, \mathrm{d}x \, \mathrm{d}y$$

$$+\frac{1}{2}\int_{U}\left[\frac{h}{8}\left\|\mathbf{a}_{r2}^{-1}\mathbf{a}_{c}-\mathbf{I}\right\|_{e}^{2}+\frac{h^{3}}{24}\left\|\mathbf{a}_{r2}^{-1}\mathbf{b}_{c}\right\|_{e}^{2}-\frac{h^{2}}{8}\left\langle\left(\mathbf{a}_{r2}^{-1}\mathbf{a}_{c}-\mathbf{I}\right),\,\mathbf{a}_{r2}^{-1}\mathbf{b}_{c}\right\rangle_{e}\right]\sqrt{\det\mathbf{a}_{r2}}\,\mathrm{d}x\,\mathrm{d}y.$$

Note: if  $\mathbf{a}_{r1} = \mathbf{a}_{r2}$  we recover the monolayer formulation.

## S1.3 Energy equivalence between mono- and bilayers

Here we show the energy equivalence between monolayers and bilayers, first for the case where the two layers have equal thickness, and then for the more general case where the layers have different thicknesses.

#### S1.3.1 Equal layer thicknesses

As described in the main text, in order to show the energetic equivalence between a curved monolayer and a bilayer, we start by making the ansatz

$$\mathbf{a}_r = (\mathbf{a}_{r1} + \mathbf{a}_{r2})/2 \tag{S1.5}$$

$$\mathbf{b}_r = \zeta (\mathbf{a}_{r1} - \mathbf{a}_{r2})/h. \tag{S1.6}$$

We can rewrite those assumptions as

$$\mathbf{a}_{r1} = \mathbf{a}_r + \frac{h}{2\zeta} \mathbf{b}_r = \mathbf{a}_r + \delta \mathbf{a}_r \tag{S1.7}$$

$$\mathbf{a}_{r2} = \mathbf{a}_r - \frac{h}{2\zeta} \mathbf{b}_r = \mathbf{a}_r - \delta \mathbf{a}_r, \qquad (S1.8)$$

where  $\delta \mathbf{a}_r = \frac{1}{2}(\mathbf{a}_{r1} - \mathbf{a}_{r2}) = h/(2\zeta)\mathbf{b}_r$ .

We proceed by expressing the two determinant factors  $\sqrt{\det \mathbf{a}_{r1}}$  and  $\sqrt{\det \mathbf{a}_{r2}}$  in terms of  $\mathbf{a}_r$ and  $\mathbf{b}_r$ . Expanding the determinants in h, we can write up to  $\mathcal{O}(h^3)$ 

$$\sqrt{\det \mathbf{a}_{r1}} = \sqrt{\det \mathbf{a}_r} \left( 1 + \frac{h}{4\zeta} \operatorname{Tr} \left[ \mathbf{a}_r^{-1} \mathbf{b}_r \right] + h^2 \left\{ \frac{1}{32\zeta^2} \operatorname{Tr}^2 \left[ \mathbf{a}_r^{-1} \mathbf{b}_r \right] - \frac{1}{16\zeta^2} \operatorname{Tr} \left[ \left( \mathbf{a}_r^{-1} \mathbf{b}_r \right)^2 \right] \right\} \right),$$

and similar for the other layer. We see that up to first order in h, we can write  $\sqrt{\det \mathbf{a}_{r1}} \approx \sqrt{\det \mathbf{a}_{r2}} \approx \sqrt{\det \mathbf{a}_{r}}$ .

Next, we look for an expression for the inverse of the layer metrics. We can write

$$\mathbf{a}_{r1}^{-1} = (\mathbf{a}_r + \delta \mathbf{a}_r)^{-1} = \mathbf{a}_r^{-1} - \mathbf{a}_r^{-1} (\delta \mathbf{a}_r) \mathbf{a}_r^{-1} + \mathbf{a}_r^{-1} ((\delta \mathbf{a}_r) \mathbf{a}_r^{-1})^2 - \dots$$
$$\mathbf{a}_{r2}^{-1} = (\mathbf{a}_r - \delta \mathbf{a}_r)^{-1} = \mathbf{a}_r^{-1} + \mathbf{a}_r^{-1} (\delta \mathbf{a}_r) \mathbf{a}_r^{-1} + \mathbf{a}_r^{-1} ((\delta \mathbf{a}_r) \mathbf{a}_r^{-1})^2 + \dots$$

We can show that  $\|\pm \delta \mathbf{a}_r(\mathbf{a}_r)^{-1}\| < 1$ :

$$\|\delta \mathbf{a}_r(\mathbf{a}_r)^{-1}\| = \|(\mathbf{a}_{r2} - \mathbf{a}_{r1})(\mathbf{a}_{r2} + \mathbf{a}_{r1})^{-1}\| = \frac{2h}{\zeta} \|\mathbf{b}_r(\mathbf{a}_r)^{-1}\| = \frac{2h}{\zeta} \|\mathbf{a}_r^{-1}\mathbf{b}_r\| < 1,$$

where the latter is true because principal curvatures are much smaller than  $h^{-1}$ , and  $h \ll 1$ . We therefore discard terms of  $((\delta \mathbf{a}_r)\mathbf{a}_r^{-1})^2$  and higher, we can substitute our ansatz in the expression for  $E_{\rm BL}$ . We will proceed by considering each of the terms in the energy density, as identified by its order in h.

First-order term We can plug in the definitions for the bottom layer

$$\begin{aligned} \frac{h}{8} \left\| \mathbf{a}_{r1}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} &= \frac{h}{8} \left\| (\mathbf{a}_{r}^{-1} - \mathbf{a}_{r}^{-1} (\delta \mathbf{a}_{r}) \mathbf{a}_{r}^{-1}) \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} \\ &= \frac{h}{8} \left\| \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} + \frac{h}{8} \left\| \mathbf{a}_{r}^{-1} (\delta \mathbf{a}_{r}) \mathbf{a}_{r}^{-1} \mathbf{a}_{c} \right\|_{e}^{2} - \frac{h}{4} \left\langle \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I}, \mathbf{a}_{r}^{-1} (\delta \mathbf{a}_{r}) \mathbf{a}_{r}^{-1} \mathbf{a}_{c} \right\rangle_{e} \\ &= \frac{h}{8} \left\| \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} + \frac{h^{3}}{32\zeta^{2}} \left\| \mathbf{a}_{r}^{-1} \mathbf{b}_{r} \mathbf{a}_{r}^{-1} \mathbf{a}_{c} \right\|_{e}^{2} - \frac{h^{2}}{8\zeta} \left\langle \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I}, \mathbf{a}_{r}^{-1} \mathbf{b}_{r} \mathbf{a}_{r}^{-1} \mathbf{a}_{c} \right\rangle_{e} \\ &= \frac{h}{8} \left\| \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} + \frac{h^{3}}{32\zeta^{2}} \left\| \mathbf{a}_{r}^{-1} \mathbf{b}_{r} \right\|_{e}^{2} - \frac{h^{2}}{8\zeta} \left\langle \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I}, \mathbf{a}_{r}^{-1} \mathbf{b}_{r} \right\rangle_{e} + \mathcal{O}(h^{4}), \end{aligned}$$

where we used  $\mathbf{a}_r^{-1}\mathbf{a}_c = \mathbf{I} + \mathcal{O}(h).$ 

Similarly, for the top layer we have

$$\frac{h}{8} \|\mathbf{a}_{r2}^{-1}\mathbf{a}_{c} - \mathbf{I}\|_{e}^{2} = \frac{h}{8} \|(\mathbf{a}_{r}^{-1} + \mathbf{a}_{r}^{-1}(\delta\mathbf{a}_{r})\mathbf{a}_{r}^{-1})\mathbf{a}_{c} - \mathbf{I}\|_{e}^{2}$$
$$= \frac{h}{8} \|\mathbf{a}_{r}^{-1}\mathbf{a}_{c} - \mathbf{I}\|_{e}^{2} + \frac{h^{3}}{32\zeta^{2}} \|\mathbf{a}_{r}^{-1}\mathbf{b}_{r}\|_{e}^{2} + \frac{h^{2}}{8\zeta} \langle \mathbf{a}_{r}^{-1}\mathbf{a}_{c} - \mathbf{I}, \mathbf{a}_{r}^{-1}\mathbf{b}_{r} \rangle_{e} + \mathcal{O}(h^{4}).$$

Multiplying by the area factors, summing, and discarding terms of  $\mathcal{O}(h^4)$  and higher gives

$$\frac{h}{8} \left( \left\| \mathbf{a}_{r1}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} \sqrt{\det \mathbf{a}_{r1}} + \left\| \mathbf{a}_{r2}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} \sqrt{\det \mathbf{a}_{r2}} \right) = \left( \frac{h}{4} \left\| \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} + \frac{h^{3}}{16\zeta^{2}} \left\| \mathbf{a}_{r}^{-1} \mathbf{b}_{r} \right\|_{e}^{2} \right) \sqrt{\det \mathbf{a}_{r2}}$$

Second-order term For the second-order term, we have for the bottom layer

$$\begin{split} \frac{h^2}{8} \left\langle (\mathbf{a}_{r1}^{-1}\mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_{r1}^{-1}\mathbf{b}_c \right\rangle_e &= \frac{h^2}{8} \left\langle \left(\mathbf{a}_r^{-1} - \mathbf{a}_r^{-1}(\delta \mathbf{a}_r)\mathbf{a}_r^{-1}\right) \mathbf{a}_c - \mathbf{I}\right), \left(\mathbf{a}_r^{-1} - \mathbf{a}_r^{-1}(\delta \mathbf{a}_r)\mathbf{a}_r^{-1}\right) \mathbf{b}_c \right\rangle_e \\ &= \frac{h^2}{8} \left\langle (\mathbf{a}_r^{-1}\mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e + \frac{h^2}{8} \left\langle \mathbf{a}_r^{-1}(\delta \mathbf{a}_r)\mathbf{a}_r^{-1}\mathbf{a}_c, \, \mathbf{a}_r^{-1}(\delta \mathbf{a}_r)\mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e \\ &- \frac{h^2}{8} \left\langle (\mathbf{a}_r^{-1}\mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1}(\delta \mathbf{a}_r)\mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e - \frac{h^2}{8} \left\langle \mathbf{a}_r^{-1}(\delta \mathbf{a}_r)\mathbf{a}_r^{-1}\mathbf{a}_c, \, \mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e \\ &= \frac{h^2}{8} \left\langle (\mathbf{a}_r^{-1}\mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e + \frac{h^4}{32\zeta^2} \left\langle \mathbf{a}_r^{-1}\mathbf{b}_r\mathbf{a}_r^{-1}\mathbf{a}_c, \, \mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e \\ &- \frac{h^3}{16\zeta} \left\langle (\mathbf{a}_r^{-1}\mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1}\mathbf{b}_r\mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e - \frac{h^3}{16\zeta} \left\langle \mathbf{a}_r^{-1}\mathbf{b}_r\mathbf{a}_r^{-1}\mathbf{a}_c, \, \mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e \\ &= \frac{h^2}{8} \left\langle (\mathbf{a}_r^{-1}\mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1}\mathbf{b}_r\mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e - \frac{h^3}{16\zeta} \left\langle \mathbf{a}_r^{-1}\mathbf{b}_r\mathbf{a}_r^{-1}\mathbf{a}_c, \, \mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e \\ &= \frac{h^2}{8} \left\langle (\mathbf{a}_r^{-1}\mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1}\mathbf{b}_r\mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e - \frac{h^3}{16\zeta} \left\langle \mathbf{a}_r^{-1}\mathbf{b}_r\mathbf{a}_r^{-1}\mathbf{a}_c, \, \mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e \\ &= \frac{h^2}{8} \left\langle (\mathbf{a}_r^{-1}\mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e - \frac{h^3}{16\zeta} \left\langle \mathbf{a}_r^{-1}\mathbf{b}_r\mathbf{a}_r^{-1}\mathbf{a}_c, \, \mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e \\ &= \frac{h^2}{8} \left\langle (\mathbf{a}_r^{-1}\mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1}\mathbf{b}_r\mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e - \frac{h^3}{16\zeta} \left\langle \mathbf{a}_r^{-1}\mathbf{b}_r\mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e + \mathcal{O}(h^4) \end{split}$$

Similarly, for the top layer:

$$\frac{h^2}{8} \left\langle (\mathbf{a}_{r2}^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_{r2}^{-1} \mathbf{b}_c \right\rangle_e = \frac{h^2}{8} \left\langle (\mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e + \frac{h^3}{16\zeta} \left\langle \mathbf{a}_r^{-1} \mathbf{b}_r, \, \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e + \mathcal{O}(h^4)$$

Multiplying by the area factors, summing, and discarding terms of  $\mathcal{O}(h^4)$  and higher gives

$$\frac{h^2}{8} \left( \left\langle (\mathbf{a}_{r1}^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_{r1}^{-1} \mathbf{b}_c \right\rangle_e \sqrt{\det \mathbf{a}_{r1}} - \left\langle (\mathbf{a}_{r2}^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_{r2}^{-1} \mathbf{b}_c \right\rangle_e \sqrt{\det \mathbf{a}_{r2}} \right) = -\frac{h^3}{8\zeta} \left\langle \mathbf{a}_r^{-1} \mathbf{b}_r, \, \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e \sqrt{\det \mathbf{a}_r}$$

Third-order term For the bottom layer we have

$$\begin{aligned} \frac{h^3}{24} \left\| \mathbf{a}_{r1}^{-1} \mathbf{b}_c \right\|_e^2 &= \frac{h^3}{24} \left\| \left( \mathbf{a}_r^{-1} - \mathbf{a}_r^{-1} (\delta \mathbf{a}_r) \mathbf{a}_r^{-1} \right) b \right\|_e^2 \\ &= \frac{h^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_c \right\|_e^2 + \frac{h^3}{24} \left\| \mathbf{a}_r^{-1} (\delta \mathbf{a}_r) \mathbf{a}_r^{-1} \mathbf{b}_c \right\|_e^2 - \frac{h^3}{12} \left\langle \mathbf{a}_r^{-1} \mathbf{b}_c, \mathbf{a}_r^{-1} (\delta \mathbf{a}_r) \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e \\ &= \frac{h^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_c \right\|_e^2 + \frac{h^5}{96\zeta^2} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \mathbf{b}_c \right\|_e^2 - \frac{h^4}{24\zeta} \left\langle \mathbf{a}_r^{-1} \mathbf{b}_c, \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e \\ &= \frac{h^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_c \right\|_e^2 + \mathcal{O}(h^4) \end{aligned}$$

For the top layer similarly:

$$\frac{h^3}{24} \left\| \mathbf{a}_{r2}^{-1} \mathbf{b}_c \right\|_e^2 = \frac{h^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_c \right\|_e^2 + \mathcal{O}(h^4)$$

Multiplying by the area factors, summing, and discarding terms of  $\mathcal{O}(h^4)$  and higher gives

$$\frac{h^3}{24} \left( \left\| \mathbf{a}_{r1}^{-1} \mathbf{b}_c \right\|_e^2 \sqrt{\det \mathbf{a}_{r1}} + \left\| \mathbf{a}_{r2}^{-1} \mathbf{b}_c \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} \right) = \frac{h^3}{12} \left\| \mathbf{a}_r^{-1} \mathbf{b}_c \right\|_e^2 \sqrt{\det \mathbf{a}_r}$$

**Combining all terms** We can now combine all results for the different terms in equation (S1.4):

$$\begin{split} E_{\rm BL} &= \frac{1}{2} \int_{U} \int_{-h/2}^{0} \|\boldsymbol{\epsilon}_{1}\|_{e}^{2} \sqrt{\det \mathbf{a}_{r1}} \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y + \frac{1}{2} \int_{U} \int_{0}^{h/2} \|\boldsymbol{\epsilon}_{2}\|_{e}^{2} \sqrt{\det \mathbf{a}_{r2}} \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y \\ &= \frac{1}{2} \int_{U} \frac{h}{8} \left( \left\| \mathbf{a}_{r1}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} \sqrt{\det \mathbf{a}_{r1}} + \left\| \mathbf{a}_{r2}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} \sqrt{\det \mathbf{a}_{r2}} \right) \, \mathrm{d}x \, \mathrm{d}y \\ &+ \frac{1}{2} \int_{U} \frac{h^{3}}{24} \left( \left\| \mathbf{a}_{r1}^{-1} \mathbf{b}_{c} \right\|_{e}^{2} \sqrt{\det \mathbf{a}_{r1}} + \left\| \mathbf{a}_{r2}^{-1} \mathbf{b}_{c} \right\|_{e}^{2} \sqrt{\det \mathbf{a}_{r2}} \right) \, \mathrm{d}x \, \mathrm{d}y \\ &+ \frac{1}{2} \int_{U} \frac{h^{2}}{8} \left( \left\langle (\mathbf{a}_{r1}^{-1} \mathbf{a}_{c} - \mathbf{I}), \, \mathbf{a}_{r1}^{-1} \mathbf{b}_{c} \right\rangle_{e} \sqrt{\det \mathbf{a}_{r1}} - \left\langle (\mathbf{a}_{r2}^{-1} \mathbf{a}_{c} - \mathbf{I}), \, \mathbf{a}_{r2}^{-1} \mathbf{b}_{c} \right\rangle_{e} \sqrt{\det \mathbf{a}_{r2}} \right) \, \mathrm{d}x \, \mathrm{d}y \\ &= \frac{1}{2} \int_{U} \left( \frac{h}{4} \left\| \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} + \frac{h^{3}}{16\zeta^{2}} \left\| \mathbf{a}_{r}^{-1} \mathbf{b}_{r} \right\|_{e}^{2} + \frac{h^{3}}{12} \left\| \mathbf{a}_{r}^{-1} \mathbf{b}_{c} \right\|_{e}^{2} - \frac{h^{3}}{8\zeta} \left\langle \mathbf{a}_{r}^{-1} \mathbf{b}_{r}, \, \mathbf{a}_{r}^{-1} \mathbf{b}_{c} \right\rangle_{e} \right) \sqrt{\det \mathbf{a}_{r}} \, \mathrm{d}x \, \mathrm{d}y. \end{split}$$

Now we readily see that if we choose  $\zeta = 3/4$ , this expression can be rewritten as

$$\begin{split} E_{\rm BL} &= \frac{1}{2} \int_{U} \left( \frac{h}{4} \left\| \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} + \frac{h^{3}}{12} \left( \frac{4}{3} \left\| \mathbf{a}_{r}^{-1} \mathbf{b}_{r} \right\|_{e}^{2} + \left\| \mathbf{a}_{r}^{-1} \mathbf{b}_{c} \right\|_{e}^{2} - 2 \left\langle \mathbf{a}_{r}^{-1} \mathbf{b}_{r}, \mathbf{a}_{r}^{-1} \mathbf{b}_{c} \right\rangle_{e} \right) \right) \sqrt{\det \mathbf{a}_{r}} \, \mathrm{d}x \, \mathrm{d}y \\ &= \frac{1}{2} \int_{U} \left( \frac{h}{4} \left\| \mathbf{a}_{r}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} + \frac{h^{3}}{12} \left\| \mathbf{a}_{r}^{-1} (\mathbf{b}_{c} - \mathbf{b}_{r}) \right\|_{e}^{2} + \frac{h^{3}}{36} \left\| \mathbf{a}_{r}^{-1} \mathbf{b}_{r} \right\|_{e}^{2} \right) \sqrt{\det \mathbf{a}_{r}} \, \mathrm{d}x \, \mathrm{d}y \\ &= E_{\rm ML} + \int_{U} \frac{h^{3}}{72} \left\| \mathbf{a}_{r}^{-1} \mathbf{b}_{r} \right\|_{e}^{2} \sqrt{\det \mathbf{a}_{r}} \, \mathrm{d}x \, \mathrm{d}y. \end{split}$$

This completes the proof of the energetic equivalence between a bilayer, defined by layer metrics  $\mathbf{a}_{r1}$  and  $\mathbf{a}_{r2}$ , and a curved monolayer, defined by midsurface quadratic forms  $\mathbf{a}_r$  and  $\mathbf{b}_r$ , sharing the same midsurface embedding characterized by  $\mathbf{a}_c$  and  $\mathbf{b}_c$ , whenever

$$\mathbf{a}_{r} = \frac{1}{2}(\mathbf{a}_{r1} + \mathbf{a}_{r2}),$$
  
$$\mathbf{b}_{r} = \frac{3}{4h}(\mathbf{a}_{r1} - \mathbf{a}_{r2}),$$
  
(S1.9)

up to an energy factor that does not depend on the embedding. Or, inversely,

$$\mathbf{a}_{r1} = \mathbf{a}_r + \frac{2h}{3}\mathbf{b}_r,$$
$$\mathbf{a}_{r2} = \mathbf{a}_r - \frac{2h}{3}\mathbf{b}_r.$$

#### S1.3.2 Unequal layer thicknesses

We consider a structure whose midsurface is located at z = 0, but whose top and bottom surface extents are no longer  $-h/2 \le z \le h/2$ , but rather some other bounds  $-h_1/2 \le z \le h_2/2$ , so that the thickness of the bottom layer is  $h_1/2$  and the thickness of the top layer is  $h_2/2$ . We start with the following expression for the energy

$$E = \frac{1}{2} \int_{U} \int_{-h_{1}/2}^{h_{2}/2} \|\boldsymbol{\epsilon}\|_{e}^{2} \sqrt{\det \mathbf{g}_{r}} \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y.$$
(S1.10)

For a monolayer, we obtain the energy integral

$$E_{\rm ML} = \frac{1}{2} \int_{U} \int_{-h_{1}/2}^{h_{2}/2} \|\boldsymbol{\epsilon}\|_{e}^{2} \sqrt{\det \mathbf{g}_{r}} \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y$$
  
$$= \frac{1}{2} \int_{U} \left[ \frac{1}{8} (h_{2} + h_{1}) \|\mathbf{a}_{r}^{-1}\mathbf{a}_{c} - \mathbf{I}\|_{e}^{2} + \frac{1}{24} (h_{2}^{3} + h_{1}^{3}) \|\mathbf{a}_{r}^{-1}(\mathbf{b}_{c} - \mathbf{b}_{r})\|_{e}^{2} - \frac{1}{8} (h_{2}^{2} - h_{1}^{2}) \left\langle (\mathbf{a}_{r}^{-1}\mathbf{a}_{c} - \mathbf{I}), \, \mathbf{a}_{r}^{-1}(\mathbf{b}_{c} - \mathbf{b}_{r}) \right\rangle_{e} \right] \sqrt{\det \mathbf{a}_{r}} \, \mathrm{d}x \, \mathrm{d}y$$

For the bilayer energy, instead, we find

$$\begin{split} E_{\rm BL} &= \frac{1}{2} \int_{U} \int_{-h_{1}/2}^{0} \|\boldsymbol{\epsilon}_{1}\|_{e}^{2} \sqrt{\det \mathbf{a}_{r1}} \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y + \frac{1}{2} \int_{U} \int_{0}^{h_{2}/2} \|\boldsymbol{\epsilon}_{2}\|_{e}^{2} \sqrt{\det \mathbf{a}_{r2}} \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y \\ &= \frac{1}{2} \int_{U} \left[ \frac{h_{1}}{8} \left\| \mathbf{a}_{r1}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} + \frac{h_{1}^{3}}{24} \left\| \mathbf{a}_{r1}^{-1} \mathbf{b}_{c} \right\|_{e}^{2} + \frac{h_{1}^{2}}{8} \left\langle (\mathbf{a}_{r1}^{-1} \mathbf{a}_{c} - \mathbf{I}), \, \mathbf{a}_{r1}^{-1} \mathbf{b}_{c} \right\rangle_{e} \right] \sqrt{\det \mathbf{a}_{r1}} \, \mathrm{d}x \, \mathrm{d}y \\ &+ \frac{1}{2} \int_{U} \left[ \frac{h_{2}}{8} \left\| \mathbf{a}_{r2}^{-1} \mathbf{a}_{c} - \mathbf{I} \right\|_{e}^{2} + \frac{h_{2}^{3}}{24} \left\| \mathbf{a}_{r2}^{-1} \mathbf{b}_{c} \right\|_{e}^{2} - \frac{h_{2}^{2}}{8} \left\langle (\mathbf{a}_{r2}^{-1} \mathbf{a}_{c} - \mathbf{I}), \, \mathbf{a}_{r2}^{-1} \mathbf{b}_{c} \right\rangle_{e} \right] \sqrt{\det \mathbf{a}_{r2}} \, \mathrm{d}x \, \mathrm{d}y. \end{split}$$

To mathematically compare these two expressions, we will proceed in the same manner as above. Our ansatz for the bilayer metrics is that they can be written as

$$\mathbf{a}_{r1} = \mathbf{a}_r + \alpha_1 \mathbf{b}_r$$
$$\mathbf{a}_{r2} = \mathbf{a}_r - \alpha_2 \mathbf{b}_r,$$

so that

$$\mathbf{a}_r = \frac{\alpha_2 \mathbf{a}_{r1} + \alpha_1 \mathbf{a}_{r2}}{\alpha_1 + \alpha_2}$$
$$\mathbf{b}_r = \frac{\mathbf{a}_{r1} - \mathbf{a}_{r2}}{\alpha_1 + \alpha_2}.$$

We know that  $\alpha_1 \sim \alpha_2 \sim \mathcal{O}(h_1) \sim \mathcal{O}(h_2)$  and will use that to simplify. We need to find an expression for the inverse of the layer metrics. As before, we can write

$$\mathbf{a}_{r1}^{-1} = (\mathbf{a}_r + \alpha_1 \mathbf{b}_r)^{-1} = \mathbf{a}_r^{-1} - \alpha_1 \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} - \dots$$
$$\mathbf{a}_{r2}^{-1} = (\mathbf{a}_r - \alpha_2 \mathbf{b}_r)^{-1} = \mathbf{a}_r^{-1} + \alpha_2 \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} + \dots$$

We discard terms of  $\mathcal{O}(\alpha_1^2, \alpha_2^2)$  and higher, and continue by treating each term in the energy equation separately in the following.

First-order term We can plug in the definitions for the bottom layer

$$\frac{h_1}{8} \left\| \mathbf{a}_{r1}^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 = \frac{h_1}{8} \left\| (\mathbf{a}_r^{-1} - \alpha_1 \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1}) \mathbf{a}_c - \mathbf{I} \right\|_e^2$$
  
$$= \frac{h_1}{8} \left\| \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 + \frac{h_1 \alpha_1^2}{8} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \mathbf{a}_c \right\|_e^2 - \frac{h_1}{4} \alpha_1 \left\langle \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}, \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \mathbf{a}_c \right\rangle_e$$
  
$$= \frac{h_1}{8} \left\| \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 + \frac{h_1 \alpha_1^2}{8} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 - \frac{h_1}{4} \alpha_1 \left\langle \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}, \mathbf{a}_r^{-1} \mathbf{b}_r \right\rangle_e + \mathcal{O}(h^4),$$

where we used  $\mathbf{a}_r^{-1}\mathbf{a}_c = \mathbf{I} + \mathcal{O}(h)$ . Similarly, for the top layer we have

$$\frac{h_2}{8} \left\| \mathbf{a}_{r2}^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 = \frac{h_2}{8} \left\| (\mathbf{a}_r^{-1} + \alpha_2 \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1}) \mathbf{a}_c - \mathbf{I} \right\|_e^2 \\ = \frac{h_2}{8} \left\| \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 + \frac{h_2 \alpha_2^2}{8} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 + \frac{h_2}{4} \alpha_2 \left\langle \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}, \mathbf{a}_r^{-1} \mathbf{b}_r \right\rangle_e + \mathcal{O}(h^4)$$

Multiplying by the area factors, summing, and discarding terms of  $\mathcal{O}(h^4)$  and higher gives

$$\frac{h_1}{8} \left\| \mathbf{a}_{r1}^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 \sqrt{\det \mathbf{a}_{r1}} + \frac{h_2}{8} \left\| \mathbf{a}_{r2}^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \\ = \left( \frac{h_1 + h_2}{8} \left\| \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 + \frac{h_1 \alpha_1^2 + h_2 \alpha_2^2}{8} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 + \frac{h_2 \alpha_2 - h_1 \alpha_1}{4} \left\langle \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}, \mathbf{a}_r^{-1} \mathbf{b}_r \right\rangle_e \right) \sqrt{\det \mathbf{a}_r}$$

Second-order term For the second term, we have for the bottom layer

$$\begin{split} \frac{h_1^2}{8} \left\langle (\mathbf{a}_{r1}^{-1}\mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_{r1}^{-1}\mathbf{b}_c \right\rangle_e &= \frac{h_1^2}{8} \left\langle \left( \mathbf{a}_r^{-1} - \alpha_1 \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \right) \mathbf{a}_c - \mathbf{I} \right), \, \left( \mathbf{a}_r^{-1} - \alpha_1 \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \right) \mathbf{b}_c \right\rangle_e \\ &= \frac{h_1^2}{8} \left\langle (\mathbf{a}_r^{-1}\mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1}\mathbf{b}_c \right\rangle_e + \frac{h_1^2 \alpha_1^2}{8} \left\langle \mathbf{a}_r^{-1}\mathbf{b}_r \mathbf{a}_r^{-1} \mathbf{a}_c, \, \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e \\ &- \frac{h_1^2 \alpha_1}{8} \left\langle (\mathbf{a}_r^{-1}\mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e - \frac{h_1^2 \alpha_1}{8} \left\langle \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \mathbf{a}_c, \, \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e \\ &= \frac{h_1^2}{8} \left\langle (\mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e - \frac{h_1^2 \alpha_1}{8} \left\langle \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \mathbf{a}_c, \, \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e + \mathcal{O}(h^4) \\ &= \frac{h_1^2}{8} \left\langle (\mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e - \frac{h_1^2 \alpha_1}{8} \left\langle \mathbf{a}_r^{-1} \mathbf{b}_r, \, \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e + \mathcal{O}(h^4) \end{split}$$

Similarly, for the top layer:

$$\frac{h_{2}^{2}}{8}\left\langle (\mathbf{a}_{r2}^{-1}\mathbf{a}_{c}-\mathbf{I}), \, \mathbf{a}_{r2}^{-1}\mathbf{b}_{c} \right\rangle_{e} = \frac{h_{2}^{2}}{8}\left\langle (\mathbf{a}_{r}^{-1}\mathbf{a}_{c}-\mathbf{I}), \, \mathbf{a}_{r}^{-1}\mathbf{b}_{c} \right\rangle_{e} + \frac{h_{2}^{2}\alpha_{2}}{8}\left\langle \mathbf{a}_{r}^{-1}\mathbf{b}_{r}, \, \mathbf{a}_{r}^{-1}\mathbf{b}_{c} \right\rangle_{e} + \mathcal{O}(h^{4})$$

Multiplying by the area factors, subtracting the top-layer term from the bottom-layer term, and discarding terms of  $\mathcal{O}(h^4)$  and higher gives

$$\frac{h_1^2}{8} \left\langle (\mathbf{a}_{r1}^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_{r1}^{-1} \mathbf{b}_c \right\rangle_e \sqrt{\det \mathbf{a}_{r1}} - \frac{h_2^2}{8} \left\langle (\mathbf{a}_{r2}^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_{r2}^{-1} \mathbf{b}_c \right\rangle_e \sqrt{\det \mathbf{a}_{r2}} = \\ = \left[ \left( \frac{h_1^2 - h_2^2}{8} \right) \left\langle (\mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e - \frac{h_1^2 \alpha_1 + h_2^2 \alpha_2}{8} \left\langle \mathbf{a}_r^{-1} \mathbf{b}_r, \, \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e \right] \sqrt{\det \mathbf{a}_r}$$

Third-order term For the bottom layer we have

$$\frac{h_1^3}{24} \left\| \mathbf{a}_{r1}^{-1} \mathbf{b}_c \right\|_e^2 = \frac{h_1^3}{24} \left\| \left( \mathbf{a}_r^{-1} - \alpha_1 \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \right) b \right\|_e^2 \\
= \frac{h_1^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_c \right\|_e^2 + \frac{h_1^3 \alpha_1^2}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \mathbf{b}_c \right\|_e^2 - \frac{h^3 \alpha_1}{12} \left\langle \mathbf{a}_r^{-1} \mathbf{b}_c, \mathbf{a}_r^{-1} \mathbf{b}_r \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e \\
= \frac{h_1^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_c \right\|_e^2 + \mathcal{O}(h^4)$$

For the top layer similarly:

$$\frac{h_{2}^{3}}{24} \left\| \mathbf{a}_{r2}^{-1} \mathbf{b}_{c} \right\|_{e}^{2} = \frac{h_{2}^{3}}{24} \left\| \mathbf{a}_{r}^{-1} \mathbf{b}_{c} \right\|_{e}^{2} + \mathcal{O}(h^{4})$$

Multiplying by the area factors, summing, and discarding terms of  $\mathcal{O}(h^4)$  and higher gives

$$\frac{h_1^3}{24} \left\| \mathbf{a}_{r1}^{-1} \mathbf{b}_c \right\|_e^2 \sqrt{\det \mathbf{a}_{r1}} + \frac{h_2^3}{24} \left\| \mathbf{a}_{r2}^{-1} \mathbf{b}_c \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_c \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_{r2}} = \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \left\| \mathbf{b}_$$

**Combining all terms** Recalling the energy density definition for the unequal-thickness bilayer, we can now plug in the above results:

$$\mathcal{E}_{\rm BL} = \frac{h_1 + h_2}{8} \left\| \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 + \frac{h_1 \alpha_1^2 + h_2 \alpha_2^2}{8} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 + \frac{h_2 \alpha_2 - h_1 \alpha_1}{4} \left\langle \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}, \mathbf{a}_r^{-1} \mathbf{b}_r \right\rangle_e \\ + \left( \frac{h_1^2 - h_2^2}{8} \right) \left\langle (\mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}), \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e - \frac{h_1^2 \alpha_1 + h_2^2 \alpha_2}{8} \left\langle \mathbf{a}_r^{-1} \mathbf{b}_r, \mathbf{a}_r^{-1} \mathbf{b}_c \right\rangle_e + \frac{h_1^3 + h_2^3}{24} \left\| \mathbf{a}_r^{-1} \mathbf{b}_c \right\|_e^2$$

For reference, the unequal-thickness monolayer energy density is

$$\mathcal{E}_{\mathrm{ML}} = \frac{1}{8}(h_2 + h_1) \left\| \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I} \right\|_e^2 + \frac{1}{24}(h_2^3 + h_1^3) \left\| \mathbf{a}_r^{-1} (\mathbf{b}_c - \mathbf{b}_r) \right\|_e^2 - \frac{1}{8}(h_2^2 - h_1^2) \left\langle (\mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}), \mathbf{a}_r^{-1} (\mathbf{b}_c - \mathbf{b}_r) \right\rangle_e$$

To equate them, the following equations have to be satisfied:

$$\frac{h_1\alpha_1^2 + h_2\alpha_2^2}{8} = \frac{1}{24}(h_2^3 + h_1^3) + c$$
(S1.11)

$$\frac{h_2\alpha_2 - h_1\alpha_1}{4} = \frac{1}{8}(h_2^2 - h_1^2) \tag{S1.12}$$

$$\frac{h_1^2 \alpha_1 + h_2^2 \alpha_2}{8} = \frac{1}{12} (h_2^3 + h_1^3).$$
(S1.13)

Here c represents an additional scalar constant that multiplies  $\|\mathbf{a}_r^{-1}\mathbf{b}_r\|_e^2$ , and therefore does not change the equilibrium configuration but closes the system of equations. We solve the last two equations for  $\alpha_2$  and  $\alpha_1$ , and then plug the solution into the first to compute c. We then find

$$\begin{aligned} \alpha_1 &= \frac{4h_1^2 - h_1h_2 + h_2^2}{6h_1} \\ \alpha_2 &= \frac{4h_2^2 - h_1h_2 + h_1^2}{6h_2} \\ c &= \frac{(h_1 + h_2)^3(h_2^2 - h_1h_2 + h_1^2)}{288h_1h_2} \end{aligned}$$

Plugging this into our ansatz gives

$$\mathbf{a}_{r1} = \mathbf{a}_{r} + \left(\frac{4h_{1}^{2} - h_{1}h_{2} + h_{2}^{2}}{6h_{1}}\right)\mathbf{b}_{r}$$
$$\mathbf{a}_{r2} = \mathbf{a}_{r} - \left(\frac{4h_{2}^{2} - h_{1}h_{2} + h_{1}^{2}}{6h_{2}}\right)\mathbf{b}_{r},$$

and

$$\mathbf{a}_{r} = \frac{h_{1}(4h_{2}^{2} - h_{1}h_{2} + h_{1}^{2})}{(h_{1} + h_{2})^{3}} \mathbf{a}_{r1} + \frac{h_{2}(4h_{1}^{2} - h_{1}h_{2} + h_{2}^{2})}{(h_{1} + h_{2})^{3}} \mathbf{a}_{r2},$$
  
$$\mathbf{b}_{r} = \frac{6h_{1}h_{2}}{(h_{1} + h_{2})^{3}} (\mathbf{a}_{r1} - \mathbf{a}_{r2}).$$
 (S1.14)

With these solutions, the final energy equivalence is

$$E_{\rm BL} = E_{\rm ML} + \int_U \frac{c}{2} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_r} \, \mathrm{d}x \, \mathrm{d}y.$$
(S1.15)

Note: if  $h_1 = h_2 = h$ , we find  $\alpha_1 = \alpha_2 = 2h/3$ , and  $c = h^3/36$ , consistent with the previous derivation.

#### S1.3.3 Unequal layer thicknesses and Young's moduli

Here we wish to find the monolayer that is energetically equivalent to a bilayer with unequal layer thicknesses as well as unequal layer Young's moduli. Here the usage of the term 'monolayer' might be misleading, since we are actually calculating the first and second fundamental form of a curved mid-surface that is surrounded by the same material as the original bilayer. This means our equivalent 'monolayer' does in fact consist of two layers of different material, each characterized by its own Young's modulus. The technical difference between the original bilayer and the equivalent monolayer, is that the former is characterized in terms its two layer metrics, whereas the latter is characterized by the first and second fundamental form of its midsurface – allowing us to solve the inverse-problem of growth exactly.

Using this perspective, defining the Young's modulus of the bottom and top layer by  $Y_1$  and  $Y_2$ , respectively, we can write the energy of the original bilayer, and the equivalent 'monolayer', as

$$E_{\rm BL} = \frac{1}{2} \int_{U} Y_1 \left[ \frac{h_1}{8} \left\| \mathbf{a}_{r1}^{-1} \mathbf{a}_c - \mathbf{I} \right\|_{e/Y}^2 + \frac{h_1^3}{24} \left\| \mathbf{a}_{r1}^{-1} \mathbf{b}_c \right\|_{e/Y}^2 + \frac{h_1^2}{8} \left\langle (\mathbf{a}_{r1}^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_{r1}^{-1} \mathbf{b}_c \right\rangle_{e/Y} \right] \sqrt{\det \mathbf{a}_{r1}} \, \mathrm{d}x \, \mathrm{d}y \\ + \frac{1}{2} \int_{U} Y_2 \left[ \frac{h_2}{8} \left\| \mathbf{a}_{r2}^{-1} \mathbf{a}_c - \mathbf{I} \right\|_{e/Y}^2 + \frac{h_2^3}{24} \left\| \mathbf{a}_{r2}^{-1} \mathbf{b}_c \right\|_{e/Y}^2 - \frac{h_2^2}{8} \left\langle (\mathbf{a}_{r2}^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_{r2}^{-1} \mathbf{b}_c \right\rangle_{e/Y} \right] \sqrt{\det \mathbf{a}_{r2}} \, \mathrm{d}x \, \mathrm{d}y$$

and

$$E_{\rm ML} = \frac{1}{2} \int_{U} \left[ \frac{1}{8} (Y_2 h_2 + Y_1 h_1) \left\| \mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I} \right\|_{e/Y}^2 + \frac{1}{24} (Y_2 h_2^3 + Y_1 h_1^3) \left\| \mathbf{a}_r^{-1} (\mathbf{b}_c - \mathbf{b}_r) \right\|_{e/Y}^2 - \frac{1}{8} (Y_2 h_2^2 - Y_1 h_1^2) \left\langle (\mathbf{a}_r^{-1} \mathbf{a}_c - \mathbf{I}), \, \mathbf{a}_r^{-1} (\mathbf{b}_c - \mathbf{b}_r) \right\rangle_{e/Y} \right] \sqrt{\det \mathbf{a}_r} \, \mathrm{d}x \, \mathrm{d}y$$

where we defined

$$\|\mathbf{A}\|_{e/Y}^{2} = \frac{\nu}{1-\nu^{2}} \operatorname{Tr}^{2}(\mathbf{A}) + \frac{1}{1+\nu} \operatorname{Tr}(\mathbf{A}^{2})$$
$$\langle \mathbf{A}, \mathbf{B} \rangle_{e/Y} = \frac{\nu}{1-\nu^{2}} \operatorname{Tr}(\mathbf{A}) \operatorname{Tr}(\mathbf{B}) + \frac{1}{1+\nu} \operatorname{Tr}(\mathbf{AB}),$$

as the elastic energy norm and inner product with the Young's modulus pulled out.

To compute the equivalence relations, we can directly rewrite equations (S1.11), (S1.12) and (S1.13) as

$$\begin{aligned} \frac{Y_1h_1\alpha_1^2+Y_2h_2\alpha_2^2}{8} &= \frac{1}{24}(Y_2h_2^3+Y_1h_1^3)+c\\ \frac{Y_2h_2\alpha_2-Y_1h_1\alpha_1}{4} &= \frac{1}{8}(Y_2h_2^2-Y_1h_1^2)\\ \frac{Y_1h_1^2\alpha_1+Y_2h_2^2\alpha_2}{8} &= \frac{1}{12}(Y_2h_2^3+Y_1h_1^3). \end{aligned}$$

Solving this for  $\alpha_1$ ,  $\alpha_2$ , and c gives

$$\begin{aligned} \alpha_1 &= \frac{4h_1^3Y_1 + 3h_1^2h_2Y_1 + h_2^3Y_2}{6h_1^2Y_1 + 6h_1h_2Y_1} \\ \alpha_2 &= \frac{h_1^3Y_1 + 3h_1h_2^2Y_2 + 4h_2^3Y_2}{6h_1h_2Y_2 + 6h_2^2Y_2} \\ c &= \frac{\left(h_1^3Y_1 + h_2^3Y_2\right)\left(h_1^4Y_1^2 + 2h_1h_2Y_1Y_2\left(2h_1^2 + 3h_1h_2 + 2h_2^2\right) + h_2^4Y_2^2\right)}{288h_1h_2Y_1Y_2(h_1 + h_2)^2} \end{aligned}$$

This allows us to write

$$\mathbf{a}_{r1} = \mathbf{a}_r + \left(\frac{4h_1^3Y_1 + 3h_1^2h_2Y_1 + h_2^3Y_2}{6h_1^2Y_1 + 6h_1h_2Y_1}\right)\mathbf{b}_r$$
$$\mathbf{a}_{r2} = \mathbf{a}_r - \left(\frac{h_1^3Y_1 + 3h_1h_2^2Y_2 + 4h_2^3Y_2}{6h_1h_2Y_2 + 6h_2^2Y_2}\right)\mathbf{b}_r,$$

and

$$\mathbf{a}_{r} = \frac{\left(h_{1}^{4}Y_{1}^{2} + 3h_{1}^{2}h_{2}^{2}Y_{1}Y_{2} + 4h_{1}h_{2}^{3}Y_{1}Y_{2}\right)}{h_{1}^{4}Y_{1}^{2} + 2h_{1}h_{2}Y_{1}Y_{2}\left(2h_{1}^{2} + 3h_{1}h_{2} + 2h_{2}^{2}\right) + h_{2}^{4}Y_{2}^{2}} \mathbf{a}_{r1} + \frac{\left(4h_{1}^{3}h_{2}Y_{1}Y_{2} + 3h_{1}^{2}h_{2}^{2}Y_{1}Y_{2} + h_{2}^{4}Y_{2}^{2}\right)}{h_{1}^{4}Y_{1}^{2} + 2h_{1}h_{2}Y_{1}Y_{2}\left(2h_{1}^{2} + 3h_{1}h_{2} + 2h_{2}^{2}\right) + h_{2}^{4}Y_{2}^{2}} \mathbf{a}_{r2}, \qquad (S1.16)$$
$$\mathbf{b}_{r} = \frac{6h_{1}h_{2}Y_{1}Y_{2}(h_{1} + h_{2})}{h_{1}^{4}Y_{1}^{2} + 2h_{1}h_{2}Y_{1}Y_{2}\left(2h_{1}^{2} + 3h_{1}h_{2} + 2h_{2}^{2}\right) + h_{2}^{4}Y_{2}^{2}} (\mathbf{a}_{r1} - \mathbf{a}_{r2}).$$

The full energy equivalence then becomes

$$E_{\rm BL} = E_{\rm ML} + \int_U \frac{c}{2} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_{e/Y}^2 \sqrt{\det \mathbf{a}_r} \, \mathrm{d}x \, \mathrm{d}y, \tag{S1.17}$$

For equal Young's moduli  $Y_1 = Y_2 = Y$  this reduces to equation (S1.14).

## S2 Forward problem of growth

This section accompanies the 'Forward problem of growth' section of the main text. Here we detail the precise form of the compatibility relations that have to be satisfied for a pair of bilayer metrics, in order for the energetically equivalent curved monolayer to exist. We also show how, following our derivation in the main text, the current result relates to the case of the saddle surface (Fig. 1 in the main text), and the linearized theory for a bimetallic strip [7].

#### S2.1 Compatibility relations

As mentioned in the main text, when solving the inverse problem we start out with a surface in  $\mathbb{R}^3$ , and so the compatibility equations are satisfied by definition. However, it is an interesting exercise to ask what equations the two layer metrics should satisfy, so that the midsurface of the energetically equivalent monolayer satisfies the compatibility relations. For this, we recall that the equations that describe compatibility for any surface in  $\mathbb{R}^3$  are the Gauss and Peterson-Mainardi-Codazzi equations, which link the entries of first and second fundamental forms [8, 9]. In particular, if the quadratic forms of the grown surface are written as

$$\mathbf{a}_c = \begin{pmatrix} E & F \\ F & G \end{pmatrix}, \qquad \mathbf{b}_c = \begin{pmatrix} e & f \\ f & g \end{pmatrix},$$

then the Gauss equation can be written as

$$K = \frac{1}{(EG - F^2)^2} \left\{ \begin{vmatrix} -\frac{1}{2}E_{vv} + F_{uv} - \frac{1}{2}G_{uu} & \frac{1}{2}E_u & F_u - \frac{1}{2}E_v \\ F_v - \frac{1}{2}G_u & E & F \\ \frac{1}{2}G_v & F & G \end{vmatrix} - \begin{vmatrix} 0 & \frac{1}{2}E_v & \frac{1}{2}G_u \\ \frac{1}{2}E_v & E & F \\ \frac{1}{2}G_u & F & G \end{vmatrix} \right\},$$
(S2.1)

which defines the Gauss' curvature  $K = (eg - f^2)/(EG - F^2)$  as an intrinsic property of the surface. The Peterson-Mainardi-Codazzi equations complete the compatibility conditions and are given as

$$\frac{\partial e}{\partial v} - \frac{\partial f}{\partial u} = e\Gamma_{12}^1 + f\left(\Gamma_{12}^2 - \Gamma_{11}^1\right) - g\Gamma_{11}^2, \tag{S2.2}$$

$$\frac{\partial f}{\partial v} - \frac{\partial g}{\partial u} = e\Gamma_{22}^1 + f\left(\Gamma_{22}^2 - \Gamma_{12}^1\right) - g\Gamma_{12}^2,\tag{S2.3}$$

where the Christoffel symbols are

$$\begin{split} \Gamma_{11}^{1} &= \frac{GE_{u} - 2FF_{u} + FE_{v}}{2(EG - F^{2})}, \qquad \Gamma_{11}^{2} &= \frac{2EF_{u} - EE_{v} - FE_{u}}{2(EG - F^{2})}, \\ \Gamma_{12}^{1} &= \frac{GE_{v} - FG_{u}}{2(EG - F^{2})}, \qquad \Gamma_{12}^{2} &= \frac{EG_{u} - FE_{v}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{v} - GG_{u} - FG_{v}}{2(EG - F^{2})}, \qquad \Gamma_{22}^{2} &= \frac{EG_{v} - 2FF_{v} + FG_{u}}{2(EG - F^{2})}. \end{split}$$

The equations (S2.1), (S2.2) and (S2.3) pose three constraints on the surface quadratic forms. In order to translate these constraints to the metrics of the individual layers, let us define the entries of each of the layer metrics as

$$\mathbf{a}_{r1} = \begin{pmatrix} E_1 & F_1 \\ F_1 & G_1 \end{pmatrix}, \qquad \mathbf{a}_{r2} = \begin{pmatrix} E_2 & F_2 \\ F_2 & G_2 \end{pmatrix}.$$

Then we can use equation (S1.9) to substitute

$$\mathbf{a}_{r} = \frac{1}{2} \begin{pmatrix} E_{1} + E_{2} & F_{1} + F_{2} \\ F_{1} + F_{2} & G_{1} + G_{2} \end{pmatrix},$$
$$\mathbf{b}_{r} = \frac{3}{4h} \begin{pmatrix} E_{1} - E_{2} & F_{1} - F_{2} \\ F_{1} - F_{2} & G_{1} - G_{2} \end{pmatrix},$$

into the above compatibility equations (S2.1), (S2.2) and (S2.3). This expresses the compatibility equations in terms of the six entries of the bilayer metrics, and its thickness, instead of the first and second fundamental form of the energetically equivalent monolayer surface.

In summary, equations (S2.1), (S2.2) and (S2.3) provide a way to determine the compatibility of the entries in any given set of bilayer metrics, even in the presence of non-uniform spatial thicknesses, and also in the case of unequal layer thicknesses by using the relations (S1.14) instead of (S1.9). However, the compatibility equations are generally not algebraic, and expose an additional complexity when the thickness h is considered to be an extra, non-uniform degree of freedom. In the remainder of this section, we will discuss some very simple examples, but in general, gaining insight into how these compatibility equations can be interpreted as constraints on the growth mechanism and/or factors will be non-trivial and is left for future work.

## S2.2 Specialization for isotropically growing bilayer : spherical surfaces

For a simple application of these equations, consider a bilayer where each layer grows isotropically, so that  $\mathbf{a}_{r1} = s_1 \mathbf{I}$  and  $\mathbf{a}_{r2} = s_2 \mathbf{I}$ , where  $s_1$  and  $s_2$  are allowed to change across the surface. The resulting monolayer surface can then be characterized by

$$\mathbf{a}_c = \frac{s_1 + s_2}{2} \mathbf{I},\tag{S2.4}$$

$$\mathbf{b}_c = \frac{3(s_1 - s_2)}{4h} \mathbf{I}.\tag{S2.5}$$

We can see immediately that the only non-planar surfaces that can be expressed using these quadratic forms have to be spherical, since the principal curvatures (the eigenvalues of the shape tensor  $\mathbf{S} = \mathbf{a}_c^{-1}\mathbf{b}_c$ ) are equal. However, we can still use it as an example to investigate under what conditions this surface can exist in  $\mathbb{R}^3$ , by examining the Gauss' and Peterson-Mainardi-Codazzi equations. Since the first fundamental form is diagonal, we can use a simplified form of Gauss' equation [9]

$$\frac{eg}{EG} = -\frac{1}{2\sqrt{EG}} \left( \frac{\partial}{\partial u} \frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v} \frac{E_v}{\sqrt{EG}} \right).$$
(S2.6)

With the current first and second fundamental forms, this gives

$$\frac{9}{4h^2} \left(\frac{s_1 - s_2}{s_2 + s_1}\right)^2 = -\frac{1}{(s_2 + s_1)} \left(\frac{\partial}{\partial u} \frac{(s_2 + s_1)_u}{s_2 + s_1} + \frac{\partial}{\partial v} \frac{(s_2 + s_1)_v}{s_2 + s_1}\right)$$

$$= -\frac{1}{(s_2 + s_1)^3} \left[(s_2 + s_1)\left((s_2 + s_1)_{uu} + (s_2 + s_1)_{vv}\right) - (s_2 + s_1)_u^2 - (s_2 + s_1)_v^2\right]$$
(S2.7)

With uniform non-equal growth factors, this equation can not be satisfied. For non-uniform growth factors, equation (S2.8) provides a second order partial differential equation that the growth factors have to satisfy (point-wise) in order for the strain-free surface to exist.

The Peterson-Mainardi-Codazzi equations simplify as well due to the diagonality of both quadratic forms, and reduce to

$$\frac{\partial e}{\partial v} = \frac{1}{2} E_v \left( \frac{e}{E} + \frac{g}{G} \right), \qquad \frac{\partial g}{\partial u} = \frac{1}{2} G_u \left( \frac{e}{E} + \frac{g}{G} \right).$$
(S2.9)

Plugging in our assumptions of isotropic growth, we find for the general case where the thickness h is a function of the parametric coordinates (u, v):

$$\frac{2h\left(s_1(s_2)_v - s_2(s_1)_v\right) + h_v(s_1 - s_2)(s_1 + s_2)}{h(s_1 + s_2)} = 0$$
(S2.10)

$$\frac{2h(s_1(s_2)_u - s_2(s_1)_u) + h_u(s_1 - s_2)(s_1 + s_2)}{h(s_1 + s_2)} = 0$$
(S2.11)

This shows that, if one of the growth factors as well as the thickness is homogeneous across the domain, such that for example  $(s_1)_u = (s_1)_v = 0$  and  $h_u = h_v = 0$ , this implies directly that  $(s_2)_u = (s_2)_v = 0$ , and from the Gauss' equation we can see that the only solution would be  $s_1 = s_2$ . This means, for isotropic growth of a bilayer where one layer grows uniformly throughout the surface, the only compatible, strain-free (up to embedding-independent strain) solution is a planar scaling of the surface.

Therefore, even for the very simple case of the isotropically growing bilayer, which can only grow into planar or spherical surfaces, it is non-trivial to find compatible bilayer metrics as this involves satisfying three partial differential equations for the growth factors and, possibly, the layer thickness(es).

#### S2.3 Specialization for orthogonally growing bilayer : saddle surfaces

Figure 1 in the main text concerns the case of linear expansion of each layer in orthogonal directions, so that

$$\mathbf{a}_{r1} = \begin{pmatrix} 1 & 0 \\ 0 & (1+s)^2 \end{pmatrix}$$
$$\mathbf{a}_{r2} = \begin{pmatrix} (1+s)^2 & 0 \\ 0 & 1 \end{pmatrix},$$

where valid solutions are constrained by s > -1. The energetically equivalent monolayer is defined by equation (S1.9) as

$$\mathbf{a}_{c} = \frac{1 + (1+s)^{2}}{2}\mathbf{I}$$
$$\mathbf{b}_{c} = \frac{3s(s+2)}{4h} \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$$

Since neither of the fundamental forms depends on the spatial coordinates, the Peterson-Mainardi-Codazzi equations (S2.9) are automatically satisfied. For the Gauss curvature, we obtain for the left-hand-side of equation (S2.6)

$$K = -\frac{9}{4h^2} \left(\frac{s(s+2)}{s(s+2)+2}\right)^2$$

which is negative for any valid value of s, i.e. whenever s > -1. However, the right-hand-side of equation (S2.6) is identically zero, so that Gauss' equation is never satisfied for this particular growth configuration.

#### S2.4 Specialization for parallel growing bilayer : 'bimetallic strip'

In this section we specialize the above relations for the case where the two layers grow in parallel directions along the midsurface, but with different growth factors. The linearized approximation of this case was treated almost a century ago [7] to show how a bimetallic strip made of two materials with different coefficients of thermal expansion curves. In that work, it was shown that the curvature of the strip can be written as

$$\kappa = \frac{6(s_2 - s_1)\left(1 + \left(\frac{h_1}{h_2}\right)\right)^2}{(h_1 + h_2)\left(3\left(1 + \frac{h_1}{h_2}\right)^2 + \left(1 + \frac{h_1Y_1}{h_2Y_2}\right)\left(\left(\frac{h_1}{h_2}\right)^2 + \frac{h_2Y_2}{h_1Y_1}\right)\right)},\tag{S2.12}$$

with  $s_i$  being the linear growth factors,  $h_i$  the thicknesses, and  $Y_i$  the Young's moduli of each layer. Here we will compare our results for a growing bilayer with this equation, for equal as well as unequal layer properties.

In our formulation, assuming that each layer expands linearly by a factor  $s_i$ , we can specify the following first fundamental forms of the two layers in their grown rest configurations

$$\mathbf{a}_{r1} = \begin{pmatrix} 1 & 0 \\ 0 & (1+s_1)^2 \end{pmatrix}$$
$$\mathbf{a}_{r2} = \begin{pmatrix} 1 & 0 \\ 0 & (1+s_2)^2 \end{pmatrix}$$

Here we assumed that the initial configuration of each layer is planar and characterized by first fundamental form **I**. From the compatibility relations (see previous section), it is easy to see that the corresponding curved configuration is embeddable without conflict, and has zero Gaussian curvature.

In the following we consider the linearized case, assuming small growth factors so that we can approximate  $(1+s_i)^2 \approx 1+2s_i$ . In this case, for a bilayer with equal thicknesses  $h_1 = h_2 = h/2$ , we find the following quadratic forms for the energetically equivalent curved monolayer

$$\mathbf{a}_{r} = \frac{1}{2} (\mathbf{a}_{r1} + \mathbf{a}_{r2}) = \begin{pmatrix} 1 & 0 \\ 0 & (1 + s_{1} + s_{2}) \end{pmatrix} \approx \mathbf{I}$$
$$\mathbf{b}_{r} = \frac{3}{4h} (\mathbf{a}_{r1} - \mathbf{a}_{r2}) = \frac{3}{2h} \begin{pmatrix} 0 & 0 \\ 0 & (s_{1} - s_{2}) \end{pmatrix},$$

where in the first relation we neglect terms of  $\mathcal{O}(s_i)$  compared to the terms  $\mathcal{O}(s_i/h)$  in the second relation. The two principal curvatures, defined as the eigenvalues of the shape tensor  $\mathbf{S} = \mathbf{a}_r^{-1}\mathbf{b}_r$ , are then equal to the diagonal terms of the second fundamental form  $\mathbf{b}_r$ . In this case of equal thicknesses and Young's moduli, Timoshenko's theory (S2.12) reduces to

$$\kappa = \frac{3}{2h}(s_2 - s_1),$$

which is exactly what we obtain from our solution for the non-zero principal curvature, up to a minus sign. The minus sign can be explained by noting that, using the definition of principal curvatures as the eigenvalues of the shape operator  $\mathbf{S} = \mathbf{a}_r^{-1}\mathbf{b}_r$ , the strip normal vectors in [7] point into layer 1, rather than into layer 2 as assumed in this work, so that the definitions of  $s_1$  and  $s_2$  are reversed.

For the case of non-equal layer thicknesses, we can use the relations (S1.14) to find

$$\mathbf{a}_{r} = \begin{pmatrix} 1 & 0 \\ 0 & 1 + \frac{2s_{1}h_{1}^{3} + (8s_{2} - 2s_{1})h_{1}^{2}h_{2} + (8s_{1} - 2s_{2})h_{2}^{2}h_{1} + 2s_{2}h_{2}^{3}}{(h_{1} + h_{2})^{3}} \end{pmatrix} \approx \mathbf{I}$$
$$\mathbf{b}_{r} = \begin{pmatrix} 0 & 0 \\ 0 & \frac{12h_{1}h_{2}(s_{1} - s_{2})}{(h_{1} + h_{2})^{3}}, \end{pmatrix}$$

where we made the same assumption as above to neglect terms of order  $\mathcal{O}(s_i)$  in the first fundamental form. When evaluating this case in Timoshenko's theory, we need to keep in mind that in our energy definition (S1.10), the bottom layer has thickness  $h_1/2$  and the top layer has thickness  $h_2/2$ , whereas in Timoshenko's formula (S2.12) the layer thicknesses are simply  $h_1$  and  $h_2$ . Taking this into account, we obtain from the theory

$$\kappa = \frac{12h_1h_2(s_2 - s_1)}{(h_1 + h_2)^3},$$

which again matches the non-zero principal curvature obtained from our analysis, up to the minus sign as explained above.

Finally, if layer thicknesses and Young's moduli are different, we find from relation (S1.16)

$$\begin{aligned} \mathbf{a}_{r} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 + \frac{2s_{1}h_{1}Y_{1}\left(h_{1}^{3}Y_{1} + h_{2}^{2}Y_{2}(3h_{1} + 4h_{2})\right) + 2s_{2}h_{2}Y_{2}\left(h_{1}^{2}Y_{1}(4h_{1} + 3h_{2}) + h_{2}^{3}Y_{2}\right)}{h_{1}^{4}Y_{1}^{2} + 2h_{1}h_{2}Y_{1}Y_{2}\left(2h_{1}^{2} + 3h_{1}h_{2} + 2h_{2}^{2}\right) + h_{2}^{4}Y_{2}^{2}} \end{pmatrix} \approx \mathbf{I} \\ \mathbf{b}_{r} &= \begin{pmatrix} 0 & 0 \\ 0 & \frac{12h_{1}h_{2}Y_{1}Y_{2}(h_{1} + h_{2})(s_{1} - s_{2})}{h_{1}^{4}Y_{1}^{2} + 2h_{1}h_{2}Y_{1}Y_{2}\left(2h_{1}^{2} + 3h_{1}h_{2} + 2h_{2}^{2}\right) + h_{2}^{4}Y_{2}^{2}}, \end{aligned}$$

whereas equation (S2.12) gives, using our definition of  $h_1$  and  $h_2$  as explained above

$$\kappa = \frac{12h_1h_2Y_1Y_2(h_1+h_2)(s_2-s_1)}{h_1^4Y_1^2 + 2h_1h_2Y_1Y_2(2h_1^2 + 3h_1h_2 + 2h_2^2) + h_2^4Y_2^2},$$

which is identical to the principal curvature obtained from the second fundamental form.

## S3 Inverse problem of growth

This section accompanies the 'Inverse problem of growth' section of the main text, where we show the constraints on the target surface curvatures as a function of the bilayer thickness in order for the energetically equivalent bilayer metrics to be positive definite. Furthermore, we expand on the discussion of the growth trajectory obtained by interpolating initial and target bilayer metrics.

#### S3.1 Constraint on target surface curvature

Given target shape metrics  $\mathbf{a}_c$  and  $\mathbf{b}_c$ , the energetically equivalent bilayer metrics are defined as

$$\mathbf{a}_{r1} = \mathbf{a}_c + \frac{2h}{3}\mathbf{b}_c, \qquad \mathbf{a}_{r2} = \mathbf{a}_c - \frac{2h}{3}\mathbf{b}_c.$$

For the metrics  $\mathbf{a}_{r1}$  and  $\mathbf{a}_{r2}$  to be valid metrics, they have to be symmetric positive definite. Their symmetry is guaranteed from the symmetry of  $\mathbf{a}_c$  and  $\mathbf{b}_c$ . To satisfy positive definiteness, we can equivalently impose that  $\mathbf{a}_c^{-1}\mathbf{a}_{r1}$  and  $\mathbf{a}_c^{-1}\mathbf{a}_{r2}$  have to have positive eigenvalues, since  $\mathbf{a}_c$  is positive definite. This implies that the eigenvalues of  $\mathbf{I} \pm (2h/3)\mathbf{S}$ , where  $\mathbf{S} = \mathbf{a}_c^{-1}\mathbf{b}_c$  is the shape operator, have to be positive. The eigenvalues of  $\mathbf{S}$  are the principal curvatures  $\kappa_1$  and  $\kappa_2$  of the target surface, and so we find that

$$\max\left(|\kappa_1|, |\kappa_2|\right) < \frac{3}{2h},\tag{S3.1}$$

has to hold for the inverse problem to be solvable. In the case of a bilayer 'strip', as discussed in the previous section, if the non-zero principal curvature becomes 3/(2h), this implies that one of the growth factors reaches  $s_i = -1$ , in both the linearized and the non-linear case. This would correspond to a zero-length material element, which is impossible.

Note that based on a spatial self-intersection of the most curved layer in the bilayer, we would expect the condition  $|\kappa_i| < 2/h$  for both principal curvatures. Our current constraint of equation (S3.1) is more conservative, implying that self-intersection can never be achieved.

#### S3.2 Trajectory of growth

The actual process of growth is considered here through interpolation of bilayer metrics, as illustrated in figure S1. Specifically, given an initial surface characterized by fundamental forms  $(\mathbf{a}_{c}^{\text{init}}, \mathbf{b}_{c}^{\text{init}})$ , we can obtain the rest metrics of the bilayer such that the global minimum-energy embedding of its midsurface equals the initial surface (step 1 in the figure). Similarly, we can obtain the rest metrics of the bilayer whose global minimum-energy configuration corresponds to a target surface  $(\mathbf{a}_{c}^{\text{target}}, \mathbf{b}_{c}^{\text{target}})$  as shown in step 2. Using any possible interpolation scheme we can then obtain the bilayer metrics of intermediate grown states: in the figure we show linear interpolation according to a parameter t, where  $0 \le t \le 1$  (step 3). Finally, for each of the intermediate, interpolated bilayer metric pair, we can find the corresponding minimum-energy embedding by minimizing the bilayer elastic energy given in equation (S1.4), as shown in step 4 of the figure.

As discussed in the main text, the choice of interpolation scheme can be made depending on the desired characteristics of the interpolated bilayer metrics  $(\mathbf{a}_{r1}(t), \mathbf{a}_{r2}(t))$ . Linear interpolation ensures positive-definiteness of each intermediate step, whereas log-Euclidean interpolation [10] guarantees moreover monotonically-varying determinants at any point.

In general, however, the intermediate monolayer rest fundamental forms  $(\mathbf{a}_r(t), \mathbf{b}_r(t))$  that have an energetic equivalence to the interpolated bilayer metrics  $(\mathbf{a}_{r1}(t), \mathbf{a}_{r2}(t))$  are not compatible, so that a strain-free embedding in three-dimensional space does not exist. This issue is similar to that discussed in section S2.1. The question how to interpolate the bilayer metrics so that the energetically equivalent monolayer rest fundamental forms satisfy the compatibility equations, is left for future work.

## S4 Results

This section accompanies the 'Results' section of the main text. We will first derive inversesolutions for simple, archetypal geometries of positive and negative Gaussian curvatures. Subsequently, we present details of the numerical method used, and the set-up and results for the flower and face examples presented in the main text.



Figure S1: An example of how to grow a disk into a face: by converting the fundamental forms of both the initial surface (1) and the target surface (2) into bilayer metrics, we have specified these two states as global energetic minima corresponding to those metrics. To transition from one state to the other, we can interpolate the two pairs of bilayer metrics, using linear interpolation as shown here (3), or any other interpolation scheme. For each interpolated pair of bilayer metrics, we then compute the corresponding minimum-energy embedding to visualize the growth process (4).

#### S4.1 Examples for archetypal geometries

Here we show the analytical expressions for  $\mathbf{a}_{r1}$  and  $\mathbf{a}_{r2}$  for three simple geometric shapes: a hemisphere, catenoid, and saddle. In all these examples, for simplicity, we choose a parametrization so that the original midsurface, prior to growth, is characterized by

$$\vec{m}_r(x,y) = (x,y,0),$$

so that the corresponding first fundamental form prior to growth is equal to the identity matrix  $\mathbf{a}_{r1}^0 = \mathbf{a}_{r2}^0 = \mathbf{I}$ . The growth tensor is defined for each layer as

$$\mathbf{a}_{r1} = \delta \mathbf{a}_{r1} \mathbf{a}_{r1}^{0} \rightarrow \delta \mathbf{a}_{r1} = \mathbf{a}_{r1} \left( \mathbf{a}_{r1}^{0} \right)^{-1} = \mathbf{a}_{r1},$$
$$\mathbf{a}_{r2} = \delta \mathbf{a}_{r2} \mathbf{a}_{r2}^{0} \rightarrow \delta \mathbf{a}_{r2} = \mathbf{a}_{r2} \left( \mathbf{a}_{r2}^{0} \right)^{-1} = \mathbf{a}_{r2},$$

and so we can interpret the final layer metrics as the growth tensors on the initial, ungrown surface.

#### S4.1.1 Hemisphere

Working with a stereographic projection of a hemisphere with unit radius, growing out of a disk with unit radius, we can write down the parametrization as

$$\vec{m}_c(x,y) = \frac{1}{1+x^2+y^2}(2x,2y,x^2+y^2-1),$$

where  $x^2 + y^2 \leq 1$ .

The corresponding quadratic forms of the hemisphere are

$$\mathbf{a}_{c}(x,y) = \frac{4}{(x^{2}+y^{2}+1)^{2}}\mathbf{I}$$
$$\mathbf{b}_{c}(x,y) = \frac{4}{(x^{2}+y^{2}+1)^{2}}\mathbf{I}.$$

Solving the inverse equations as discussed in the paper provides us with first fundamental forms of a bilayer that will have its energetic equilibrium immersion equal to the hemisphere:

$$\mathbf{a}_{r1}(x,y) = \mathbf{a}_{c} + \frac{2h}{3}\mathbf{b}_{c} = \frac{4}{(x^{2} + y^{2} + 1)^{2}} \left(1 + \frac{2h}{3}\right) \mathbf{I}$$
$$\mathbf{a}_{r2}(x,y) = \mathbf{a}_{c} - \frac{2h}{3}\mathbf{b}_{c} = \frac{4}{(x^{2} + y^{2} + 1)^{2}} \left(1 - \frac{2h}{3}\right) \mathbf{I},$$

which can be interpreted as isotropic inhomogeneous growth of each layer of the original disk.

#### S4.1.2 Catenoid

For the catenoid, we can work with the following parametrization

$$\vec{m}_c(x,y) = (c \cosh\left(\frac{y}{c}\right) \cos x, y, c \cosh\left(\frac{y}{c}\right) \sin x),$$

where c is the inner radius of the catenoid. Here  $0 \le x \le 2\pi$ , and  $-H/2 \le y \le H/2$ , where H is the catenoid height. When following this parametrization, we are essentially rolling up a rectangular sheet into a catenoid geometry.

The corresponding quadratic forms of the catenoid are

$$\mathbf{a}_{c}(x,y) = \cosh^{2}\left(\frac{y}{c}\right) \begin{pmatrix} c^{2} & 0\\ 0 & 1 \end{pmatrix}$$
$$\mathbf{b}_{c}(x,y) = \begin{pmatrix} c & 0\\ 0 & -\frac{1}{c} \end{pmatrix}.$$

Then the bilayer growth that is needed to grow the rectangular sheet into a catenoid is given by

$$\mathbf{a}_{r1}(x,y) = \mathbf{a}_c + \frac{2h}{3}\mathbf{b}_c = \begin{pmatrix} c^2 \cosh^2\left(\frac{y}{c}\right) + \frac{2ch}{3} & 0\\ 0 & \cosh^2\left(\frac{y}{c}\right) - \frac{2h}{3c} \end{pmatrix}$$
$$\mathbf{a}_{r2}(x,y) = \mathbf{a}_c - \frac{2h}{3}\mathbf{b}_c = \begin{pmatrix} c^2 \cosh^2\left(\frac{y}{c}\right) - \frac{2ch}{3} & 0\\ 0 & \cosh^2\left(\frac{y}{c}\right) + \frac{2h}{3c} \end{pmatrix},$$

which can be interpreted as orthotropic inhomogeneous growth of each layer of the original rectangular bilayer. The principal growth directions are the same for each layer, and align with the parameter vectors on the planar sheet.

#### S4.1.3 Hyperbolic paraboloid

As an example of surface with both positive and negative curvature, we consider growing a hyperbolic paraboloid out of a disk, so that

$$\vec{m}_c(x,y) = (x,y,x^2 - y^2)$$

where  $x^2 + y^2 \le 1$ .

This parametrization gives rise to the following quadratic forms

$$\mathbf{a}_{c}(x,y) = \begin{pmatrix} 1+4x^{2} & -4xy \\ -4xy & 1+4y^{2} \end{pmatrix}$$
$$\mathbf{b}_{c}(x,y) = \frac{2}{\sqrt{1+4x^{2}+4y^{2}}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$\mathbf{a}_{r1}(x,y) = \mathbf{a}_c + \frac{2h}{3}\mathbf{b}_c = \begin{pmatrix} 4x^2 + 1 + \frac{4h}{3\sqrt{4x^2 + 4y^2 + 1}} & -4xy\\ -4xy & 4y^2 + 1 - \frac{4h}{3\sqrt{4x^2 + 4y^2 + 1}} \end{pmatrix}$$
$$\mathbf{a}_{r2}(x,y) = \mathbf{a}_c - \frac{2h}{3}\mathbf{b}_c = \begin{pmatrix} 4x^2 + 1 - \frac{4h}{3\sqrt{4x^2 + 4y^2 + 1}} & -4xy\\ -4xy & 4y^2 + 1 + \frac{4h}{3\sqrt{4x^2 + 4y^2 + 1}} \end{pmatrix}$$

which can be interpreted as general orthotropic inhomogeneous growth of each layer: performing a spectral decomposition of each matrix reveals the principal growth factors and direction for each of the two layers of the original disk.

#### S4.2 Numerical method

As shown above, given a mapping  $\vec{m}: U \to \mathbb{R}^3$  that takes any point  $(x, y) \in U$  to the threedimensional embedding of the midsurface, the first and second fundamental forms of the midsurface are, respectively

$$\begin{split} \mathbf{a}_c &= \begin{pmatrix} \vec{m}_x \cdot \vec{m}_x & \vec{m}_x \cdot \vec{m}_y \\ \vec{m}_x \cdot \vec{m}_y & \vec{m}_y \cdot \vec{m}_y \end{pmatrix}, \\ \mathbf{b}_c &= - \begin{pmatrix} \vec{m}_x \cdot \vec{n}_x & \vec{m}_x \cdot \vec{n}_y \\ \vec{m}_x \cdot \vec{n}_y & \vec{m}_y \cdot \vec{n}_y \end{pmatrix}, \end{split}$$

where the subscripts x and y denote partial derivatives in those directions, and  $\vec{n}(x,y) = \vec{m}_x(x,y) \times \vec{m}_y(x,y)$ 

 $\frac{m_x(x,y) \times m_y(x,y)}{\|\vec{m}_x(x,y) \times \vec{m}_y(x,y)\|}$  is the normal vector to the midsurface.

Using these conventions, we have derived above the bilayer energy of a shell whose midsurface is characterized by quadratic forms  $\mathbf{a}_c$  and  $\mathbf{b}_c$ , given the layer metrics  $\mathbf{a}_{r1}$  and  $\mathbf{a}_{r2}$ . Here we will explain how this expression is discretized and implemented for numerical simulations.

In particular, we rely on a triangle discretization of the midsurface, and compute the quadratic forms of each triangle separately in order to evaluate the energy integral. Each triangle is defined by the positions of its three vertices  $(\vec{v}_0, \vec{v}_1, \vec{v}_2)$ , where  $\vec{v}_i \in \mathbb{R}^3$ . From this we can compute the edge vectors  $\vec{e}_0 = \vec{v}_1 - \vec{v}_0$ ,  $\vec{e}_1 = \vec{v}_2 - \vec{v}_1$ , and  $\vec{e}_2 = \vec{v}_0 - \vec{v}_2$ . Using the edge vectors as tangent vectors to the local plane spanned by the triangle, we can directly compute the first fundamental form of triangle T as

$$\mathbf{a}_T = \begin{pmatrix} \vec{e}_1 \cdot \vec{e}_1 & \vec{e}_1 \cdot \vec{e}_2 \\ \vec{e}_1 \cdot \vec{e}_2 & \vec{e}_2 \cdot \vec{e}_2 . \end{pmatrix}$$

For the second fundamental form, we follow [11] and introduce an extra degree of freedom, the unit-length mid-edge normal director defined on each edge of the mesh. In a shear-free setting, as considered here, this director can be defined by a scalar variable, since it is constrained to move in the plane spanned by the normal vectors of two adjacent triangles. The directional derivative of the normal field, as required for the computation of the second fundamental form, is then obtained using a simple difference of the mid-edge normals between two of the three edges of each triangle. In particular, if we denote the edge normal by  $\vec{n}_i$ , where i = 0, 1, 2 is the edge index, we get the following entries for the discrete second fundamental form:

With these discrete quadratic forms, we can evaluate the energy density of the bilayer energy definition for each individual triangle, and sum these over all the triangles in the domain to obtain the total energy. In the context of finite element methods this numerical method is essentially a geometric reformulation of the constant-strain triangle (CST) for the membrane energy, and the Morley triangular element [12] for the bending energy [11, 13].

Once the energy can be computed on a given triangular mesh, we need to find the minimumenergy configuration corresponding to a given combination of  $(U, \mathbf{a}_{r1}, \mathbf{a}_{r2})$ . For this we perform an iterative, quasi-Newton minimization of the bilayer energy over all vertices and edge director degrees of freedom. The gradients of the discrete energy with respect to the degrees of freedom are implemented algebraically [14].

These operations are implemented using the C++ programming language. We rely on the Eigen library [15] for data representations and numerical algebra computations, and the libigl library [16] for general operations on the triangle mesh. The energy minimization is performed using an L-BFGS quasi-Newton iterative solver [17].

#### S4.3 Snapdragon flower

The snapdragon material model was kindly provided by the group of Prof. Coen [18]. We smoothed and remeshed the model to obtain a homogeneous triangle distribution of the surface, resulting in a mesh with 13 500 triangles. The snapdragon mesh was deformed into a cylinder by performing a conformal mapping onto the plane [19, 20], deforming this planar map into a disk, and mapping that disk back up into a cylinder. We set the Poisson ratio of the material to  $\nu = 0.3$ , and the thickness 0.005R, where R is the radius of the initial cylinder. We use the log-euclidean approach [10] to interpolate between the metrics, to ensure smoothly varying symmetric positive-definite tensors with monotonically-varying determinants at any point in the growth process.

Directly interpolating between initial and target shapes leads to a meta-stable final state different from the target shape. The reason is the incompatibility between the first and second fundamental form corresponding to the interpolated bilayer metrics, as explained in the main text. Since our numerical process uses the last grown state as initial guess for the next growth step, and since we do not perform a global energy minimization but rather rely on a quasi-Newton algorithm, the final shape is obtained as a local rather than the global energy minimum. In particular, the final shape corresponds to an inversion of the three downward-facing petals, such that they appear on the inside of the flower rather than the outside. Our numerical method does not penalize self-intersection and so the three petals end up intersecting the flower wall (see figure S3, right-most image). To ensure that the growth process finalizes in the global energy minimum corresponding to the target shape, we create four anchoring states between the initial and final configurations. These intermediate states are computed as a simple linear interpolation of the three-dimensional mesh node positions between the initial and target mesh, and therefore are by construction embeddable in three-dimensional space. For each of these four states, we then computed the first and second fundamental forms, which by extension are compatible. This then allowed us to compute the growth factors required to transition from and to each state according to the method sketched in the main text. This approach breaks the forward problem up into five stages, each of which was simulated by interpolating the growth factors from their initial to their final values, and computing the quasi-static equilibrium configuration for each intermediate growth factor. In total, we used 100 intermediate stages to visualize the growth process.

The difference between these two approaches can be quantified by measuring the monolayer component of the energy corresponding to the bilayer metrics. Recalling the equivalence relation between the energy of bilayers and monolayers described in the main text, we have

$$E_{\rm BL} = E_{\rm ML} + \int_U \frac{\hbar^3}{72} \left\| \mathbf{a}_r^{-1} \mathbf{b}_r \right\|_e^2 \sqrt{\det \mathbf{a}_r} \, \mathrm{d}x \, \mathrm{d}y, \tag{S4.1}$$

where

$$\mathbf{a}_r = \frac{1}{2}(\mathbf{a}_{r1} + \mathbf{a}_{r2}), \qquad \mathbf{b}_r = \frac{3}{4h}(\mathbf{a}_{r1} - \mathbf{a}_{r2}).$$
 (S4.2)

If the first and second fundamental forms  $\mathbf{a}_r$  and  $\mathbf{b}_r$  are compatible, by the Bonnet theory they uniquely describe a surface in three-dimensional space. This surface, characterized by  $\mathbf{a}_c = \mathbf{a}_r$ and  $\mathbf{b}_c = \mathbf{b}_r$ , minimizes the bilayer energy  $E_{\rm BL}$ , since the corresponding monolayer component  $E_{\rm ML} = 0$ , whereas the second term in the bilayer energy is independent of the embedding. Conversely, if  $\mathbf{a}_r$  and  $\mathbf{b}_r$  are not compatible, the minimum energy embedding of the bilayer would correspond to a non-zero monolayer energy due to the residual strain in the embedding. We can therefore use the monolayer energy as a measure of the incompatibility between the bilayer metrics, in the context of shell elasticity.

For the direct interpolation, leading to the inverted geometry, the monolayer energy increases almost monotonically during the quasi-static growth process, with a couple of kinks when the geometry snaps between metastable states (see red line in left panel of figure S2). Whereas the starting state (the cylinder) has zero monolayer energy, the final state is characterized by a large monolayer energy, indicating a large residual strain. A visual representation of the monolayer energy density shown in figure S3, indicates that the largest residual strain occurs on the 'knuckles' of the three petals, which indeed are curved the wrong way compared to the target shape, resulting in a substantial bending strain.

For the second approach each anchor point corresponds to an embeddable configuration, so that the build-up of residual strain is limited. In between each anchor point the growth process is still characterized by some residual strain, and even at some anchor points a meta-stable state is obtained, but the growth trajectory ultimately leads to the target shape: the residual strain at the final configuration is zero (see red line in right panel of figure S2). As discussed in the main text, more work is required to come up with growth trajectories so that metastable states are avoided, or to control the residual strain in order to achieve different target shapes depending on the spatiotemporal growth pattern.

To measure the error between the final computed shape and the flower target shape we computed the Hausdorff distance, a measure of the maximum distance between the two shapes, which we non-dimensionalize by the square root of the total flower area. This measure is 0.84%, indicating a very close match between the grown shape and the target shape.



Figure S2: Total bilayer energy (black) decomposed into an embedding-dependent monolayer component (red) and the remaining embedding-independent component (dashed blue). For the case without anchor points (left) the monolayer energy increases significantly, indicating a large build-up of residual strain, including at the final configuration. When we introduce anchor points in the growth process (right, the four anchor points are shown as dots on the lines) the monolayer energy is bounded and the target configuration, characterized by zero monolayer energy, is reached when the growth process is complete. All energies are non-dimensionalized by the Young's modulus and shell volume.

The natural morphogenesis of the snapdragon flower, which is considered in the main text of this work as an example, has been well-studied [21, 18]. The natural initial state is a cylinder much shorter than the initial configuration used in this work, and furthermore has five small lobes arranged around its upper perimeter. Nevertheless, keeping in mind that this difference amounts roughly to an initial vertical scaling, we can still compare the growth factors and orientations between our results and the natural growth process. Given our results in figure S4, we see remarkable similarities to the biological growth factors described in [21]: the largest growth factors occur at the far end of the lobes, and the directions are mostly consistent, especially on the three downward-oriented petals. We do observe less dominant vertical growth, and more pronounced azimuthal growth on the two large upward-oriented petals, presumably because in our initial tube the corresponding material points are squished together around the perimeter, whereas in the natural initial state they are already separated into lobes. This change between the initial conditions is also likely to reduce or remove the large energetic barrier that has to be overcome in our simulations, which is especially pronounced in the earlier stages of growth.

Follow-up investigations are required to address these differences in more detail, which could be attributed to differences in the initial state, the dynamic adaptation of the growth factors of the natural flower, and the possibility that the natural final configuration has significant deformation-dependent residual strain, as opposed to our solution.

#### S4.4 Max Planck's face

The face model was derived from a 3D model of a bust of Max Planck, from which we sliced off the backward half in order to keep only the face, resulting in a mesh with 35 000 triangles. The initial condition was created by conformally mapping the face onto the plane, fixing the boundary vertices along the radius of a disk [19, 20]. The disk was then rescaled to have the same area as the face. We set the Poisson ratio of the material to  $\nu = 0.3$ , and the thickness



Figure S3: Three-dimensional view of the snapdragon growth without anchor points, at interpolation factors 0.2, 0.4, 0.6, 0.8 and 1.0. The colors denote the distribution of the monolayer energy density  $E_{\rm ML}$  over the surface. The final configuration (right) is characterized by inverted petals and, consequently, non-zero monolayer energy.

0.01R, where R is the radius of the initial disk. In this case we used 100 intermediate stages created by interpolating the growth factors from their initial to their final values. The total growth of tangent vector lengths on the disk varied between -75% and 300%. The Hausdorff distance between the computed final shape, and the target shape, is 0.91%, where we use the square root of the total face area to non-dimensionalize the metric.

#### S4.5 Horseshoe bend

Elevation data of the horseshoe bend, a meander of the Colorado river in Arizona, was obtained from the National Elevation Dataset of the U.S. Geological Survey. The horseshoe bend was found in the dataset identified by n37w112, with elevation data available in 1/3 arc-second resolution. The resulting IMG file was read using the GDAL library [22], and the pure elevation was extracted. We then sliced the dataset to keep only the horseshoe bend and its immediate surroundings (an area of approximately two by three kilometers, with elevations ranging from 939 m at the bottom of the river, and 1332 m at the top of the canyon), after which the threedimensional target shape was obtained by warping the elevation data in the direction normal to the plane. The original shape was remeshed using 20 000 triangles, and the planar initial condition was created by conformally mapping the shape onto the plane, while fixing the coordinates of the boundary vertices in the original rectangle shape [19, 20]. We set the Poisson ratio of the material to  $\nu = 0.3$ , and the thickness H/131, where H is the maximum height of the target mesh – compared to the real-life dimensions, this would correspond to a thickness of three meters. Similar to the snapdragon flower, we use anchor points to help guiding the growth trajectory: the first anchor point was created by rescaling the vertical axis of the final configuration by 75%, the second by rescaling the vertical axis by 25%. The total number of intermediate steps used to grow the horseshoe bend is 125. Intermediate metrics were obtained through log-Euclidean interpolation. The Hausdorff distance between the computed final shape, and the target shape, is 0.05%, where we use the square root of the total area to non-dimensionalize the metric.



Figure S4: Final grown state of the snapdragon flower with the principal growth orientation (thick black lines) and sum of the two growth factors (colors) overlaid, for the top layer (left) and the bottom layer (right).

## References

- [1] E. Efrati, E. Sharon, and R. Kupferman. Elastic theory of unconstrained non-Euclidean plates. *Journal of the Mechanics and Physics of Solids*, 57(4):762–775, 2009.
- [2] C. Weischedel. A discrete geometric view on shear-deformable shell models. PhD thesis, 2012.
- [3] B. Audoly and Y. Pomeau. *Elasticity and geometry. From hair curls to the non-linear response of shells.* Oxford University Press, 2010.
- [4] H. Liang and L. Mahadevan. The shape of a long leaf. Proceedings of the National Academy of Sciences, 106(52):22049–22054, 12 2009.
- [5] M. Lewicka, L. Mahadevan, and M. R. Pakzad. The Föppl-von Karman equations for plates with incompatible strains. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 467(2126):402–426, 07 2011.

- [6] M. Lewicka, L. Mahadevan, and M. R. Pakzad. Models for elastic shells with incompatible strains. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2165):20130604–20130604, 03 2014.
- [7] S. Timoshenko. Analysis of bi-metal thermostats. Journal of the Optical Society of America, 11(3):233, 09 1925.
- [8] Manfredo P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.
- [9] D. J. Struik. Lectures on Classical Differential Geometry. Dover Publications, 2nd edition, 1988.
- [10] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. *Magnetic Resonance in Medicine*, 56(2):411–421, 2006.
- [11] C. Weischedel, A. Tuganov, T. Hermansson, J. Linn, and M. Wardetzky. Construction of discrete shell models by geometric finite differences. Technical Report 220, Fraunhofer ITWM, 2012.
- [12] L. S. D. Morley. The constant-moment plate-bending element. The Journal of Strain Analysis for Engineering Design, 6(1):20–24, 01 1971.
- [13] A. Quaglino. A framework for creating low-order shell elements free of membrane locking. International Journal for Numerical Methods in Engineering, 108(1):55–75, 03 2016.
- [14] R. Tamstorf and E. Grinspun. Discrete bending forces and their Jacobians. Graphical Models, 75(6):362–370, 2013.
- [15] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.
- [16] A. Jacobson, D. Panozzo, et al. libigl: A simple C++ geometry processing library, 2016. http://libigl.github.io/libigl/.
- [17] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(1-3):503–528, 08 1989.
- [18] R. Kennaway, E. Coen, A. Green, and A. Bangham. Generation of diverse biological forms through combinatorial interactions between tissue polarity and growth. *PLoS Computational Biology*, 7(6):e1002071, 2011.
- [19] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares conformal maps for automatic texture atlas generation. In *Proceedings of the 29th annual conference on Computer graphics and interactive techniques - SIGGRAPH '02*. Association for Computing Machinery (ACM), 2002.
- [20] P. Mullen, Y. Tong, P. Alliez, and M. Desbrun. Spectral conformal parameterization. Computer Graphics Forum, 27(5):1487–1494, 07 2008.
- [21] Amelia A. Green, J. Richard Kennaway, Andrew I. Hanna, J. Andrew Bangham, and Enrico Coen. Genetic control of organ shape and tissue polarity. *PLoS Biology*, 8(11):e1000537, 11 2010.
- [22] GDAL Development Team. GDAL Geospatial Data Abstraction Library, Version 2.2.1. Open Source Geospatial Foundation, 2017.